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Abstract

Transcriptome Shotgun Sequencing (RNA-seq) has been readily embraced by geneticists
and molecular ecologists alike. As with all high-throughput technologies, it is critical to
understand which analytic strategies are best suited and which parameters may bias the
interpretation of the data. Here we use a comprehensive simulation approach to explore
how various features of the transcriptome (complexity, degree of polymorphism p, alterna-
tive splicing), technological processing (sequencing error e, library normalization) and bio-
informatic workflow (de novo vs. mapping assembly, reference genome quality) impact
transcriptome quality and inference of differential gene expression (DE). We find that tran-
scriptome assembly and gene expression profiling (EdgeR vs. BaySeq software) works well
even in the absence of a reference genome and is robust across a broad range of parameters.
We advise against library normalization and in most situations advocate mapping assem-
blies to an annotated genome of a divergent sister clade, which generally outperformed de
novo assembly (TRANS-ABYSS, TRINITY, SOAPDENOVO-TRANS). Transcriptome complexity (size,
paralogs, alternative splicing isoforms) negatively affected the assembly and DE profiling,
whereas the effects of sequencing error and polymorphism were almost negligible. Finally,
we highlight the challenge of gene name assignment for de novo assemblies, the impor-
tance of mapping strategies and raise awareness of challenges associated with the quality
of reference genomes. Overall, our results have significant practical and methodological
implications and can provide guidance in the design and analysis of RNA-seq experiments,
particularly for organisms where genomic background information is lacking.
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Introduction

The study of gene expression has traditionally been
reserved for genetic model organisms. For organisms
like human, Drosophila or Arabidopsis, rich genomic
resources readily allow the design of microarrays to
examine global patterns of gene expression and various

features of the transcriptome. For genetic nonmodel
organisms, gene expression studies were long restricted
to qPCR analyses of candidate genes (Axtner & Sommer
2009) or had to rely on cross-species hybridization on
microarrays (Naurin et al. 2011), which ultimately
remains a compromise (Bar-Or et al. 2006).
Massively parallelized RNA sequencing technology

(RNA-seq) has added a valuable tool: millions of short
reads are generated from steady-state RNA and con-
comitantly provide transcriptome sequence information
and a digital measure of gene expression (Ozsolak &
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Milos 2010). Compared with microarray data, results
from a number of studies suggest that RNA-seq is gen-
erally more accurate and captures a broader range of
expression levels (Marioni et al. 2008; Fu et al. 2009). It
also holds great promise to detect unknown transcripts
and unravel previously inaccessible complexities such
as allele-specific expression, novel splicing variants or
promotors (Ozsolak & Milos 2010). It is therefore not
surprising that RNA-seq has become the technology of
choice for transcriptome investigation (Deng et al. 2011).
For molecular ecologists, RNA-seq has opened the

unprecedented opportunity to explore transcriptomes of
basically any species in a number of different ways
(Ekblom & Galindo 2011). For example, consensus
sequences from de novo assembled transcriptomes have
been used for comparative genomic analyses (Elmer
et al. 2010; Künstner et al. 2010), to obtain resources for
SNP genotyping or for the design of custom micro-
arrays to study gene expression (Kvist et al. 2012). Gene
expression levels have also been directly inferred from
the number of sequencing reads themselves, indepen-
dent of prior genomic knowledge of the species in ques-
tion. This approach has recently gained considerable
momentum in a broad range of research areas, includ-
ing the role of differential gene expression (DE) in phe-
notypic divergence and speciation (Lenz et al. 2012;
Goetz et al. 2010; Wolf et al. 2010) and areas such as
dosage compensation (Wolf & Bryk 2011) and alterna-
tive splicing (Harr & Turner 2010) that have been tradi-
tionally reserved to genetic model systems under
laboratory conditions.
Although an increasing number of empirical studies con-

vincingly portray RNA-seq as a promising tool for genetic
nonmodel organisms, little attention has been paid to the
parameters bearing on transcriptome quality and RNA-seq
based measures of gene expression. This is surprising, as
many aspects including transcriptomic features (e.g. size,
repetitiveness, normalization), quality (e.g. library prepara-
tion, clustering efficiency) and quantity of the short-read
data, as well as the bioinformatic processing (e.g. transcrip-
tome assembly, read alignment, statistical modelling of
read count data) alter the current state of the data on which
all subsequent downstream analyses depend. So far, only
isolated aspects such as mapping accuracy (Palmieri &
Schlötterer 2009), de novo assembly (Grabherr et al. 2011)
and statistical approaches to differential expression analy-
sis (Kvam et al. 2012) have been explored.
We here use extensive in silico computer simulations

based on two vertebrate genomes (zebra finch and
human) to evaluate the performance of standard RNA-
seq pipelines from whole-transcriptome sequencing to
its assembly, subsequent measurements of gene expres-
sion and statistical inference of differences between
treatment groups (Fig. 1).

In a first step, we explore how the quality of a freshly
assembled transcriptome is affected by the following set
of parameters:

1 Mode of assembly (three de novo assemblers vs. map-
ping assembly on divergent reference genomes),

2 transcriptome complexity (~4400 unique genes
vs. ~17400 genes including paralogs of different age),

3 RNA library normalization (uniform vs. strongly
skewed gene expression profile),

4 different levels of sequencing error e (0, 0.01),
5 polymorphism p (0, 0.001, 0.01),
6 annotation quality of the reference genome and
7 alternative splicing.

In a second step, we assess how well the simulated
expression levels are represented after passing through
the entire RNA-seq pipeline (input vs. output), and
what the influences of the above mentioned parameters
are. Last, we investigate their effects on differential

(A)

(B)

Fig. 1 Overview of an RNA-seq pipeline with special focus on
nonmodel organisms lacking a reference genome. (A) Graphi-
cal display of how short reads are sequenced from a gene and
are then assembled into contigs. (B) Workflow of a typical
RNA-seq experiment. Dashed boxes refer to the parameters
that are specifically investigated in this study.
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expression metrics (false and true positives). We antici-
pate that this exploration will be useful both in guiding
the experimental and bioinformatic design of RNA-seq
experiments and interpreting the results against an
in silico null model.

Materials and methods

Data simulation

We chose the zebra finch transcriptome as the main
backbone of our simulations (Warren et al. 2010),
which has around 17 475 protein coding genes (ENSEMBL

61, www.biomart.org, mean length of 1843 bp, range:
560–26 831 bp) of which 13 752 have ENSEMBL gene
status ‘known’, 3235 have status ‘novel’, 131 have sta-
tus ‘putative’ and 357 have status ‘known by projec-
tion’. Parts of the assembly cannot be precisely placed
along the chromosome and are located on a ‘random’
version of the chromosome (878 genes) or are not
localized to any chromosome (3113 ‘Un’ genes) in EN-
SEMBL. Similar annotation uncertainties will be found
in most other moderately well curated genomes
(Church et al. 2011). We are confident that the results
presented below are comparable with other species,
but it may still be useful to follow some of the steps
before starting an RNA-seq experiment on any particu-
lar species (all scripts are accessable via Dryad
doi:10.5061/dryad.3t3n7).
Complete annotated Coding DNA Sequence (CDS)

were downloaded from BioMart (ENSEMBL 61, www.biom-
art.org) resulting in a total of 17 475 genes of which 75
were randomly removed to achieve equal binning of
expression levels (see below). As untranslated regions
(UTRs) are not well annotated in the zebra finch genome
(~8% of the genes have annotated 5′ UTRs and ~21%
have annotated 3′ UTRs, respectively), we added 100bp 5′
and 400bp 3′ (median length of annotated 5′/3′ UTRs:
100/330, 1st quantile 56/198, 3rd quantile 167/473) to
mimic the situation encountered when sequencing ‘real’
EST libraries. The zebra finch transcriptome contains a
considerable number of gaps (239 786 Ns) which were
replaced with bases chosen at random using average CDS
nucleotide frequencies. Paired-end sequencing (100 bp read
length, 300 bp insert size) was simulated using DWGSIM (ver-
sion 0.1.2 http://sourceforge.net/apps/mediawiki/dnaa/
index.php?title=Whole_Genome_Simulation, accessed on
12th January 2012) to mimic data from a standard Illumina
based RNA-seq experiment (for coverage see below).
To address various crucial issues inherent in RNA-

seq experiments, the following data sets were simulated
(see Fig. 2a and Introduction):

1 Transcriptome complexity (size, presence of paralogs)
will likely adversely affect the assembly and may also

influence estimation of DE. We simulated reads based
on a simple transcriptome reference including only
unique genes (4400 genes = 4K) without paralogs,
and a more realistic large complex transcriptome
including paralogs (full 17 400 gene set = 17K). Paral-
og status was inferred from the homolog filter in
BioMart (ENSEMBL Version 61).

2 Data generated in an RNA-seq experiment will have
large variation in gene coverage corresponding to dif-
ferent levels of expression. While it is possible to nor-
malize mRNA extracts to obtain a more even
distribution of gene transcripts, such a procedure
compromises the subsequent use of differential
expression analyses (but see Ekblom et al. 2012). We
simulated both a scenario where reads are uniformly
distributed across all genes (‘normalized library’) and
a realistic scenario of highly skewed read coverage
per gene.

(A)

(B)

(C)

Fig. 2 Overview of this study. (A) Description of the 24 raw
data sets that were simulated to address aspects of transcrip-
tome complexity (17 400 [17K] vs. 4400 [4K] genes), library
normalization (uniform vs. exponential), sequencing error e
and polymorphism levels p. (B) These data sets consisting of
short reads were then assembled in different ways by two
de novo assembly approaches and a mapping assembly strategy
to reference genomes of ‘closely related species’ that differed
in the degree of sequence divergence (5%, 15%, 30%). (C) Eval-
uation of how parameters in (A) and assembly strategies in (B)
influence transcriptome quality and measures of (differential)
gene expression. In this step gene name assignment and the
influence of gene annotation quality of the reference genome
were also explored.
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While expression profiles across genes are usually
approximated with a gamma-distribution [e.g. (Kvam
et al. 2012)], the exponential distribution provides a
good compromise. It captures the strong right-skew of
expression data (Figs S1 and S2, Supporting informa-
tion) and only uses one parameter k (=mean coverage)
which makes it suitable for simulation. To mimic
skewed gene expression, genes were randomly distrib-
uted into 100 bins corresponding to read coverage given
by the percentiles of the exponential distribution.

3 In order to evaluate the tolerance of assembly and
mapping tools with respect to sequencing errors and
polymorphism rates, we set sequencing error rate (e)
to 0 and 0.01 [e for Illumina data ~0.05 for raw data
(Pareek et al. 2011)] and the polymorphism rate (p) to
0, 0.001 and 0.01 (thus covering a realistic range).

In total, the combination of these scenarios results in
24 different data sets (Fig. 2a). Sequencing-bias in
CG-content was not simulated to keep the parameter
space to a manageable size. Alternative splicing was
investigated in separate simulations on the human gen-
ome (see below).
For all scenarios, we simulated ~100 million paired-

end 100 bp reads for the 17K data set and ~20 million
paired-end reads for the 4K data, respectively which
translates to a ~7009 coverage per base varying
between 29 and 40009 for the skewed distribution. The
number of reads chosen was based on the hallmark
output currently obtained from one lane of the Illumina
HiSeq 2000 technology after adapter and quality trim-
ming (~100 million paired-end reads). This amount of
data seems realistic for a broad range of RNA-seq
projects and should capture most of the genes present
in an RNA sample (Wang et al. 2011).

Transcriptome assembly

In order to examine the parameters in questions, we
first needed to assemble the simulated reads into con-
tigs. In an ideal world, every contig would correspond
to exactly one transcript from which reads were simu-
lated (Fig. 1) which in reality is, however, rarely the
case (see recovery and accuracy below). Each of the 24
data sets was assembled using both de novo and map-
ping based strategies. De novo assemblies were
performed using TRINITY version r2011-08-20 (Grabherr
et al. 2011) and SOAPDENOVO-TRANS version 1.01 (http://
SOAP.genomics.org.cn/SOAPdenovo-Trans.html, accessed
on December 12th 2011). In TRINITY the assemblies
were performed with default settings. SOAPDENOVO-
TRANS assemblies were performed at all odd k-mers
between 21 and 99. The k-mer with the best recovery
(definition see below) was selected for each data set

(see Fig. S3, Table S4, Supporting information). TRANS-
ABYSS was tested for the simplest data set and found
to have significantly lower recoveries than both TRI-
NITY and SOAPDENOVO-TRANS and was therefore
excluded from further analyses (results not shown).
To mimic a reference-based mapping assembly, we

generated three differently diverged reference tran-
scriptomes (sequence divergence 5%, 15%, 30%) using
DAWG (Cartwright 2005) with a Jukes-Cantor model of
nucleotide substitution. Mapping assemblies were then
performed on the in silico reference transcriptomes
using STAMPY version 1.0.13 (Lunter & Goodson 2011)
with the bwa option to speed up the mapping process.
STAMPY was chosen to make use of its hybrid map-
ping algorithm which has been shown to be more sensi-
tive and efficient in mapping divergent reads (Lunter &
Goodson 2011). For each of the data sets, the consensus
sequence was called based on the STAMPY mapping
output sam file using SAMTOOLS version 0.1.12 with pileup
with default options (Li et al. 2009).

Assessment of assembly quality

Recovery and accuracy. Efficiency of the different strate-
gies and tools was evaluated by calculating the recovery
and accuracy of the assemblies. Recovery refers to the
proportion of bases from the reference transcriptome
recovered in the assembled transcriptome, and accuracy
refers to the proportion of bases that correctly matched
the orthologous position in the reference genes. Recov-
ery was calculated separately for fully and partially
assembled genes (Fig. S4, Supporting information). Con-
tigs that contained more than one gene were designated
as chimera and their recovery was calculated sepa-
rately, considering only the gene that was covered to a
larger extent.
For mapping assemblies, recovery and accuracy can

be directly calculated by comparing the reference tran-
script to the assembled consensus sequence for a given
transcript. For de novo assemblies, contigs first need to
be aligned to the reference transcriptome. We used the
NUCmer alignment tool from the MUMMER package ver-
sion 3.22 (Kurtz et al. 2004) to align all contigs gener-
ated by the assemblers to the respective reference
transcriptomes (4K, 17K). The contigs were assigned to
gene names based on the gene to which they best
aligned (for details, see Fig. S5, Supporting informa-
tion). For partially or fully overlapping contigs that
aligned to the same gene, we used the coverageBed
command from BEDTOOLS version 2.11.2 (Quinlan & Hall
2010) on the alignments reported by NUCmer to calcu-
late the maximum total recovery. Only those contigs
that aligned to reference genes were used to calculate
recovery and accuracy.

© 2012 Blackwell Publishing Ltd
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While measures of recovery and accuracy provide a
good comparison of the overall assembly quality, they
do not provide any information about the structural
errors prevalent in the assemblies. We utilized the
scripts available from GAGE (Salzberg et al. 2012) to find
the presence of various structural errors such as inver-
sions (part of a contig reversed with respect to the ref-
erence gene), translocations (chimera), relocations
(within a gene), duplications, repeat compression, and
insertions and deletions (indels).

Contiguity. Contiguity indices such as N50 can give an
indication about how fragmented the recovered tran-
scripts are (N50 is defined as the length of the contig
such that half of all bases in the assembly are made of
sequences of equal or longer length). However, N50 val-
ues can be misleading for transcriptome assemblies as
transcript length is highly heterogeneous. We therefore
standardize contig N50 by the expected N50 given by
the actual transcript length of the reference (N50ratio). In
case of full recovery of every transcript, the N50ratio will
be 1. Chimeras can increase the value and should be
treated separately. This index can also be used if a refer-
ence genome is only available for a closely related spe-
cies under the justified assumption that gene length is
usually well conserved (Xu et al. 2006).

Assessing effects of transcriptome complexity. Paralogous
genes constitute a particular challenge for both de novo
and mapping assembly strategies. To examine the sus-
ceptibility of paralogs to biases in mapping and de novo
assembly, we used the contrast between the paralog-
free 4K gene set and the full 17K gene set. Note that
transcriptome complexity here refers to a combination
of size and presence of paralogs.

Gene annotation. Gene annotation is of special concern
in nonmodel organisms lacking reference genomes. In
the absence of a reference genome, gene annotation
hinges on the availability of transcriptome sequences
from the closest available taxon. We compared the per-
formance of suffix-tree-based methods (NUCmer, PRO-
mer) and slower intensive alignment tools such as
BLAST2GO, SATSUMA and PAPAYA for gene annotation across
different levels of divergence.

Simulation of differential gene expression

For each of the 24 generated data sets (see Fig. 2a), we
simulated 20 biological replicates by randomly sampling
reads for each gene. We chose an average per-replicate
sequence coverage of 359, corresponding to on average
of 500 read pairs per gene. These 20 libraries were parti-
tioned into two treatment groups (i.e. conditions, pheno-

types or populations, in a biological context) of 10
individuals each, between which differential expression
was simulated. A log2-fold change (LFC) in expression
levels between these two groups was randomly assigned
for each gene, with in total 50% of genes with a LFC of
0, 20% with a LFC of 0.5, 16% with a LFC of 1, 8% with
a LFC of 2, 4% with a LFC of 3 and 2% with a LFC of 4.
Average expression levels were kept the same across
LFC classes. For each gene, read counts for each individ-
ual library were generated according to a negative bino-
mial (NB) distribution using the rnbinom function in R
version 2.14.0. The ‘mean’ parameter of the NB distribu-
tion was set to the previously assigned mean level of
expression for a gene across the 10 libraries in each treat-
ment group (i.e. using a different mean for each treat-
ment group). The ‘size’ parameter of the NB distribution
represents the reciprocal of the dispersion parameter,
which was in turn randomly drawn from a gamma
distribution with shape and scale parameters set to 0.85
and 0.5, respectively [as in (Hardcastle & Kelly 2010)].

Assessment of parameter influence on gene expression
levels

Comparing the number of reads per gene that was
simulated (input ~ RNA concentration) to that which is
actually counted for, the same gene after the assembly
and mapping steps (output ~ RNA-seq count data)
provides a quantitative measure of the bias caused by
the bioinformatic processing (Fig. 1b). As the origin for
each of the simulated reads was known, we also
inferred the proportion of erroneously mapped reads
using a random assignment strategy of multi-mapped
reads in contrast to only quantifying best mapping or
uniquely mapping read pairs.

de novo assembly. In a first step, gene names were
assigned to contigs obtained by the SOAPDENOVO-
TRANS and Trinity assembler using NUCmer (see
above). These assemblies were then used as a reference
to map the paired-end reads originally used for the
assembly (input) using BWA version 0.5.9 (Li et al. 2009)
with default settings. The number of reads aligning to
contigs that had been assigned gene names was then
used to calculate the number of reads which would in a
real case scenario be used as a digital measure of gene
expression (output).

Mapping assembly. Reference genome-based transcrip-
tome assemblers like CUFFLINKS (Trapnell et al. 2010)
directly use read counts from the initial mapping step to
infer (differential) gene expression. When mapping reads
to a distant genome, a consensus sequence has to be gen-
erated prior to the mapping step. This has the additional
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advantage that intronic regions and pseudogenes are
excluded during the mapping step which can reduce the
problems of mismapping at the cost of missing out on
unannotated genes or mismapping of reads from unan-
notated genes onto annotated paralogs. We used consen-
sus sequences obtained from SAMTOOLS from mapping
assemblies generated using STAMPY (see above) as ref-
erences to map paired-end reads using bwa.

Assessment of parameter influences on differential gene
expression (DE)

Differential expression analysis of the mapped read
counts was conducted with EDGER version 2.4.3 (Robin-
son et al. 2010) and BAYSEQ version 1.8.2 (Hardcastle &
Kelly 2010). Library sizes were normalized using the
TMM method in EDGER, and the quantile method in bay-
Seq. In EDGER, dispersion was estimated on a tagwise (i.e.
gene-by-gene) basis using the dispersion estimation prior
determined by the getPriorN function. The prior deter-
mines the amount of squeezing of the dispersion esti-
mate for each gene towards the estimated mean
dispersion. For our comparison of 10 biological replicates
for each group, the getPriorN function returned a prior of
1.33. This prior performed better than either a common
(i.e. nontagwise) dispersion estimate, or tagwise disper-
sion estimates with priors 0 (no squeezing towards the
mean) and 5 (strong squeezing towards the mean) (data
not shown). In BAYSEQ, prior parameters were esti-
mated by resampling (n = 10 000 as recommended);
otherwise, default estimation parameters were used.
Performance in the inference of differential expres-

sion was compared for transcriptome complexity (two
levels), polymorphism and error rates (six levels),
assembly types (seven levels) and DE software (two lev-
els) (cf. Fig. 2). In addition, we compared performance
for two levels of gene expression: genes with very low
expression (average number of reads <25, 6.5–7.8% of
genes), and genes with average to high expression
(average number of reads of 100 or more, 72.8–76.5% of
genes). The combination of these conditions amounts to
a total of 336 data sets.
Performance was measured in several ways. First, we

computed false positive rates (FPR: number of genes
that were simulated to have no differential expression
(LFC = 0), but were inferred to be differentially expressed)
as well as true positive rates (TPR) for each LFC category
with differential expression (0.5, 1, 2, 3, and 4). Second, we
plotted receiver-operator-characteristic (ROC) curves
using the ROCR package version 1.0-4 (Sing et al. 2005) in R.
Third, for each data set, we calculated the correlation
between the gene-by-gene LFC among the simulated read
counts (input), and the gene-by-gene LFC among the
mapped read counts (output). As comparisons between

conditions (e.g. 4K and 17K genes) are replicated across
many other of the 336 conditions, we could perform
paired Mann-Whitney-U tests to test for significant differ-
ences among LFC correlations, FPRs and TPRs (the latter
at each level of LFC).

Influence of the annotation quality of the (distant)
reference genome

We finally tested whether the annotation status of a
gene (‘known’ vs. ‘novel’, ‘putative’ or ‘known by pro-
jection’) or knowledge of chromosome location (‘known’
vs. ‘random’ or ‘unlocated’) influenced the estimates of
(differential) gene expression. We calculated the propor-
tion of mismappped reads/number of simulated reads
for each gene and averaged across all genes for each of
the parameter combination (see above). We then
compared the influence of annotation quality and the
interaction with assembly methodology in an ANOVA

framework where each parameter combination repre-
sents one independent data point.

Alternative splicing

With respect to alternative splicing, we limited our-
selves to estimate isoform usage (per gene abundances
and frequency distributions) from empirical RNA-seq
data, in order to keep our already extensive simulation
set-up tractable. We chose to use the human genome, as
high annotation quality is vital for this exercise. RNA-
seq data from four liver libraries of four different indi-
viduals (Perry et al. 2012) were pooled and mapped to
the human genome (version 37 with ENSEMBL 66 annota-
tion). Read counts for each of those genes [using RSEM
(Li & Dewey 2011)] were then used to infer the read
distribution per gene and isoform. This information
was then used to simulate transcriptome data in the
same way as for the zebra finch based analyses (see
above), including 73 629 (of 150 465 annotated) iso-
forms expressed in 21 405 protein coding genes from
the liver data set considered. All the isoforms belonging
to the same gene were forced to have the same level of
LFC between groups. To reduce statistical noise all
analyses were restricted to genes with a minimum
expression level [FPKM value >0.5, cf. (Grabherr et al.
2011)]. Overall, this set-up allowed us to analyse perfor-
mance both at the gene-level and the isoform-level.
Analogous to the main simulation described above, a

subset of parameter values were explored. We assessed
the relative performance of de novo vs. mapping assem-
blies and the effects of different expression levels. When
testing the effect of sequencing error (e) and polymor-
phism (p), we restricted the simulations to the most
extreme scenarios (e/p = 0/0 and 0.01/0.01, respectively).

© 2012 Blackwell Publishing Ltd

6 N. VI JAY ET AL.



We only used the complex, empirically based transcrip-
tome and restricted the DE analysis to EDGER. For de
novo assembly, we used TRINITY with default settings.
Assembled transcripts were assigned to gene/isoform
names based on alignments to the human transcriptome
(Fig. S5, Supporting information). RSEM was used for
inference of read counts per transcript (isoform) for
each of the 20 libraries. For mapping assemblies we first
generated (5%, 15%, 30%) divergent reference tran-
scriptomes using Dawg with the Jukes-Cantor model of
nucleotide substitution. The simulated reads were
mapped onto these transcriptomes using STAMPY
allowing for multiple mapping. SAMTOOLS was used
to call consensus sequence after converting all the alter-
nate mapping positions into multimapping positions
using the script xa2multi.pl from SAMTOOLS so as to
accommodate isoforms. RSEM was used to find read
counts per transcript for each of the 20 individuals by
mapping reads onto the human consensus transcrip-
tome obtained by the mapping assembly in the previ-
ous step.

Results

Assembly quality

Assembly type. Mapping assemblies on 5% and 15%
divergent reference transcriptomes had on average
higher recoveries than de novo assemblies across all con-
ditions (Fig. 3 and Fig. S6a,b, Table S1, Supporting infor-
mation). Mapping assemblies based on a 30% divergent
reference fared notably worse. Even though having
higher recovery, mapping assemblies had slightly lower
accuracy values than de novo assembled contigs (SOAP
DENOVO-TRANS: mean accuracy 99.75; TRINITY: mean
accuracy 99.65%; mapping to 5% divergent reference:
99.37%; 15%: 98.18%; 30%: 93.98%). Mapping assemblies
also outcompeted de novo assemblies in the presence of
isoforms. The difference in recovery between mapping
and de novo assembly was here most pronounced for
lowly expressed genes and almost vanished for highly
expressed genes (Table S1, Supporting information).
Among de novo assemblies, those generated by SOAP-

DENOVO-TRANS (SOAP hereafter) had a slightly higher
recovery than TRINITY (Fig. 3), but comparable accura-
cies (Table S1, Supporting information). Both assemblers
produced relocations in comparable number and only one
of the TRINITY assemblies had one inversion (exponential
distribution, e = 0.01, p = 0.01). Indels were more com-
mon for data sets with higher sequencing error and poly-
morphism rates for both TRINITY assemblies and SOAP

assemblies. All assemblies had a considerable number of
compressed repeats and duplications (Table S2, Support-
ing information).

TRINITY assemblies appeared to be more contiguous
than assemblies obtained from SOAP (Fig. 3), particularly in
situations with high sequencing error and polymorphism
levels (Table S1, Supporting information). While this was
partly owing to the presence of chimera which were twice
as common for the TRINITY assembler (Fig. 3, Table S3,
Supporting information) contiguity of TRINITY assemblies
remained higher even after excluding chimeras (N50ratio
values: TRINITY mean 0.98; range 0.8–1.04; SOAP mean
0.75; range 0.24–1).
De novo assemblies produced by the TRINITY assem-

bler provide additional information about the contigs
generated by grouping alleles, isoforms and paralogs
into ‘components’. We found that even in the data sets
simulated without alternative splicing, no sequencing
error, no polymorphism and no paralogs for 7.87% of
the genes many isoforms were erroneously inferred
(ranging from 2 to 335 isoforms per gene, mean/med-
ian 100/55 isoforms, Fig. S7, Supporting information).
While an increase in transcriptome complexity (4K–
17K) strongly increased their number, higher polymor-
phism and error levels had only slight effects (Fig. S7,
Supporting information).
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Fig. 3 Recovery of the reference transcriptome for (A) the full
set of 17 400 genes and (B) a less complex transcriptome of
4400 genes (both with highly skewed read distribution) dis-
played in relation to assembly strategy, sequencing error e and
polymorphism levels p.
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Assembly of contains was not surprisingly far worse for genes with fewer reads.






Transcriptome complexity. For de novo assemblies, recovery
was considerably lower for complex transcriptomes (17K
vs. 4K) across all conditions (Fig. 3 and Fig. S6a,b, Table
S1, Supporting information). Complex transcriptomes
were also less contiguous as indicated by lower N50ratios
particularly for the SOAP assembler (mean N50ratios 17K/
4K SOAP: 0.71/0.80; TRINITY: 0.99/0.98). For mapping
assemblies, recovery was less compromised by transcrip-
tome complexity (Fig. 3).

Read count distribution (‘library normalization’). The uni-
form read distribution data sets had comparable, but in
all cases slightly higher recovery than exponential read
distributions (uniform/exponential mapping assembly:
mean 94.40/92.85%, ranges 83.74–98.50/76.91–99.74%;
de novo: mean 93.15/89.01, 83.74–98.50/78.52–98.35%).
While the read distribution slightly influenced the
degree of fragmentation and the proportion of chimeric
contigs, its overall influence on contiguity was low
(Fig. S6a,b, Tables S1–S3, Supporting information).

Polymorphism and error levels. Overall, polymorphism
and error level had only a very small influence on
assembly quality. While this is counter intuitive at first,
an increase in both polymorphism and error levels
resulted in a small increase in recovery for mapping
assemblies [(e = 0, p = 0)/(e = 0.01, p = 0.01): mean
92.36/94.66%, range 77.86–99.80%/82.02–99.97%). The
increase was accompanied by a decrease in accuracy
indicating the presence of mis-assemblies [(e = 0,
p = 0)/(e = 0.01, p = 0.01): mean 97.60/96.62%, range
92.84–99.75/89.22–99.46%).
De novo assemblies followed a different pattern: recov-

ery dropped with sequencing error and polymorphism
(Fig. 3), but accuracy remained basically constant [recov-
ery (e = 0, p = 0)/(e = 0.01, p = 0.01) mean 91.95/89.98%,
range 85.09–98.50/78.52–98.14%; accuracy (e=0, p = 0)/
(e = 0.01, p = 0.01) mean 99.99/99.35%, range 99.98–
100.00/99.33–99.41%) indicating that ‘problematic reads’
get purged during the assembly process. At high levels
of sequencing error and polymorphism recovery, conti-
guity was more negatively impacted for SOAP than for
TRINITY (Fig. 3, Tables S1–S3, Supporting information).
Data sets simulated from the human transcriptome

with alternative splicing showed similar trends. De novo
assemblies with no sequencing error and no polymor-
phism (e = 0, p = 0) had a recovery of 34% compared to
a recovery of 29% with sequencing error and polymor-
phism (e = 0.01, p = 0.01). Mapping assemblies on 5%
divergent transcriptome performed better [(e = 0,
p = 0): 67% & (e = 0.01, p = 0.01): 64%). The increase in
recovery with increasing error and polymorphism rates
seen in the zebra finch data set was also observed in
the human data set for the mapping assemblies at 15%

and 30% divergence. The increase in recovery was
again accompanied by a slight decrease in accuracy
(Table S1, Supporting information).

Gene name assignment

In mapping assemblies, direct inference of gene names
is in principle possible. However, in a realistic situation
where a tissue-specific subset of the genome (here 4K)
is annotated with the full CDS (17K, based on NUCmer
alignments), genes from the 4K set were incorrectly
assigned in a number of cases even when divergence
was 0%. Mis-assignment increased with divergence
(e.g. exponential distribution (e = 0, p = 0)/(e = 0.01,
p = 0.01): 5% 299/358 genes, 15%: 361/407 genes, 30%:
375/417 genes).
For de novo assembly, contigs need to be cross-linked

to the annotated reference. In the majority of the genes,
gene names could be confidently assigned by aligning
contigs to 0% (mean 97.37%, range 97.04–97.78%), 5%
(mean 96.42%, range 96.00–96.90%) and 15% (mean
88.21%, range 85.09–90.16%) divergent reference
genomes. Genes from the 4K set were incorrectly
assigned when using the 17K reference in a number of
cases (but less than for mapping assemblies) even when
divergence was 0% (mean: 99, range: 55–147). With
increasing divergence (5%, 15%) the number of incor-
rect assignments increased (5%: mean 156, range 147–
165, 15%: mean 158, range 147–165, see Tables S5–S6,
Supporting information). As the divergence to the refer-
ence increased to 30% a large number of genes could
not be aligned to the same contigs using faster tools like
NUCMER (mean 0.24%, range 0.14–0.29%, see Table S6,
Supporting information) and PROMER (see Table S6, Sup-
porting information). More sensitive tools like BLAST,
BLAT, BLASTZ, BLAST2GO or the SPINES package, on the con-
trary, were able to assign a higher proportion of con-
tigs, but were struggling with apparent mis-assignment
(Appendix S1, Supporting information).

Gene expression

We assessed how well the original number of simulated
reads (input ~ sequenced steady-state mRNA) was still
reflected after passing through the bioinformatic pipe-
line (=output, Figs 1 and 2). We also assessed the num-
ber of mismapped reads that were simulated for gene
X, but were incorrectly assigned to gene Y. In the fol-
lowing, we report how the different parameters impact
on read recovery (correlation qSpearman and output/
input proportion = recovery) and the proportion of
mismappings.
Overall, read counts after assembly and/or mapping

were in good accordance with simulated expression
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values for all assemblies under all conditions (qSpearman:
mean 0.91, range 0.75–1.00). Recoveries were generally
also high. This was, however, partly due to a consider-
able amount of mismapped reads that for some genes
would lead to an overestimation of gene expression
[Fig. 4, recovery: mean 98.43% (80.2% correct), range
62% (39.88% correct)–111% (96.16% correct)].

Assembly type. Read counts were slightly closer to the
input values for mapping assemblies than for de novo
assemblies across all other conditions [mapping/de novo
qSpearman: mean 0.9528/0.9466, range 0.9133–0.9700/0.8825
–0.9925; recovery: mean 94.04% (75.96% correct)/105%

(87.12% correct)]. With increasing divergence, the number
of reads was overestimated for a number of genes and
underestimated for others due to incorrect mapping (Fig.
S8, Supporting information). Incorrect mapping was less of
a problem in de novo assemblies, where instead the number
of reads was systematically underestimated (Fig. S8, Sup-
porting information). Among de novo assemblies, SOAP

on average outperformed TRINITY [qSpearman: SOAP/
TRINITY mean 0.96/0.93, range 0.91–1.00/0.84–0.99; recov-
ery mean 103% (87.36% correct)/107% (86.88% correct)].
Contigs available in de novo assemblies were separated into
those with and without chimera. Excluding the chimeric
contigs did not produce any drastic differences suggesting
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that they do not strongly bias gene expression estimates
(qSpearman: mean 0.95/0.95, range 0.89–1.00/0.88–0.99).

Transcriptome complexity. The simpler transcriptome
data set had a better correlation between the number of
input and output reads, but the effect was moderate
(4K/17K qSpearman: mean 0.97/0.93, range 0.95–0.98/
0.92–0.95).

Polymorphism and error levels. An increase in polymor-
phism and error rates resulted in reduced overall pro-
portions and correlations between the number of input
and output reads [e.g. (e = 0, p = 0)/(e = 0.01, p = 0.01):
proportion mean 0.95/94, range 0.93–0.98/0.92–0.97].

Influence of the annotation quality of the (distant)
reference genome

The annotation quality of a gene significantly deter-
mined the degree of mismapping (Fig. 4, Figs S9 and
S10, Appendix S1, Supporting information). While the
proportion of correctly assigned reads was not affected
by annotation status (‘known’ vs. ‘novel’, ‘putative’ or
‘known by projection’; F1,233 = 0.9597 P > 0.05), mis-
mapping proportions were significantly increased for
genes placed on ‘random’ chromosomes or with
unknown chromosomal location ‘Un’ (ANOVA:
F1,233 = 64.9, P < 0.001). Statistical interaction between
assembly type and chromosome status (ANOVA:
F4,225 = 7.2, P < 0.001) indicated that mapping assem-
blies up to 5% divergence were significantly less sensi-
tive to mismapping errors than both de novo assemblies
and mapping assemblies of higher divergence (posthoc
Bernoulli test: P < 0.001, Fig. S9, Supporting informa-
tion). Genes with unknown chromosome status also
clearly performed worse with respect to inference of DE
(Fig. S11, Supporting information, Table S7).

Differential gene expression

We compared the performance of inferring differential
gene expression (DE hereafter) in relation to our
parameters of interest (cf. Figs 1 and 2) as well as two
differential expression software types, EDGER and BAY-

SEQ. Performance assessment is primarily presented
using false and true positive rates (FPR and TPR) at
different levels of log fold change (LFC). Two other
metrics of performance, ROC curves and the correla-
tion in LFC between simulation output and pipeline
output (hereafter LFC correlation), generally gave very
similar results. They are presented in the Supplemen-
tary Materials and only mentioned here when contrib-
uting contrasting or additional information. Finally,
we also present the effects of absolute levels of

expression on the relative performance of all condi-
tions.

Assembly type. Mapping assemblies based on 5% diver-
gence outperformed all types of de novo assemblies
(Fig. 5a and Fig. S12a, Table S8, Supporting informa-
tion). Mapping assemblies generally had higher (false
and true) positive rates than de novo assemblies. FPRs
were higher especially at 15% and 30% divergence lev-
els, and at very low levels of expression. As expected,
the quality of mapping assemblies decreased with
increasing divergence level. At 15% divergence, map-
ping assembly performance was very similar to, but
overall still slightly better than that of de novo assem-
blies (Table S8, Supporting information). At 30% diver-
gence, mapping assemblies were outperformed by
de novo assemblies: while TPRs are similar, FPRs are
higher and ROC curves and LFC correlations lower in
the mapping assemblies (Table S8, Supporting informa-
tion).
Overall, SOAP and TRINITY performed similarly.

However, relative performance differed between
expression levels: at very low expression levels, SOAP

performed much worse than TRINITY, while at high
expression levels, SOAP outperformed TRINITY (Fig. 5a;
plotted are assemblies with chimeric contigs, the same
pattern is seen without chimeric contigs, in Fig. S13c,
Supporting information.) This is mainly due to low
recovery by SOAP at low expression levels: ROC plots
only assess performance for isoforms that are actually
detected, and these are similar or even better for SOAP

(Figs S12a and S14c, Supporting information). De novo
assemblies with chimeric contigs performed only
slightly worse than assemblies without chimeric contigs,
with higher FPRs and TPRs (Fig. S13a,b and Table S8,
Supporting information), and lower ROC curves and
LFC correlations (Fig. S14a,b and Table S8, Supporting
information).
Patterns were similar for the data sets incorporating

the effect of alternatively splicing. Overall, 5% mapping
assemblies again performed best, 15% mapping assem-
blies and de novo assemblies performed similarly and
30% mapping assemblies performed worst (Figs S15c,d
and S16c,d, Supporting information). With mapping
being carried out at the isoform level, however, de novo
assemblies performed worst of all assemblies, at least in
terms of absolute positive rates (Fig. S15c, Supporting
information). This poor performance is largely due to
many isoforms not being present in the de novo assem-
blies to begin with: among isoforms that were actually
retrieved, de novo assemblies in fact performed about as
well as 5% mapping assemblies (see ROC curves in Fig.
S16d, Supporting information, and LFC-correlations in
Table S8, Supporting information).
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Transcriptome complexity. Performance of differential exp-
ression inference was slightly worse in the more complex
data sets (17K vs. 4K). Overall, in the 17K data sets, the
FPR is consistently higher, while TPRs at all levels of LFC
are consistently lower, as is the LFC correlation (Table S8,
Supporting information). These differences are more pro-
nounced at higher levels of LFC and for very lowly
expressed genes (Fig. 5b and Fig. S12b, Supporting infor-
mation).

Polymorphism and error levels. Levels of polymorphism
and sequencing error had very little effect on perfor-
mance in inferring DE, although, as expected, there
was a tendency of decreased performance for higher
levels (Fig. 5c and Fig. S12c, Table S8, Supporting
information). When analysing rates of polymorphism
and error separately, small differences between the
highest and lowest level of polymorphism could be
detected, while our magnitude of variation in error

rate did not appear to have any effect on performance
(Table S8, Supporting information). In the isoform data
sets as well, error and polymorphism levels had very
little effect on performance (Figs S15a and S16a, Table
S11, Supporting information).

DE software. Overall, EDGER outperformed BAYSEQ for all
metrics (Fig. 5d and Fig. S12d, Table S8, Supporting infor-
mation). Looking at positive rates, the differences were
most pronounced for the lowest levels of expression
(Fig. 5d). At higher levels of expression, BAYSEQ in fact
had a lower FPR, and also a higher TPR at a LFC level of
0.5 (Fig. 5d, Table S8, Supporting information), yet EDGER
had a higher TPR rate from LFC of 1 and higher.

Isoforms. Overall, the TPR of differential expression were
only slightly lower when mapping was performed at the
isoform level as compared to the level of the gene (Fig.
S15c,d, Table S11, Supporting information). This was true
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both for lowly and highly expressed transcripts, but note
that the difference was much larger for de novo assemblies
(see above). The lower performance at the isoform-level is
mostly due to a proportion of isoforms not being present
in the assembly to begin with (as ROC plots are similar for
gene- and isoform-based analyses, see Fig. S16c,d,
Supporting information).

Discussion

Using extensive simulated RNA-seq data, we here
explore how transcriptomic features (complexity, poly-
morphism level, alternative splicing), common technolog-
ical challenges (sequencing error, library normalization)
and elements of the bioinformatic workflow (mapping
and de novo assembly, gene annotation, inference of iso-
forms) affect transcriptome assembly quality and infer-
ence of (differential) gene expression. Despite some
oversimplification inherent in all simulation approaches,
we have attempted to mimic a realistic range of RNA-
seq experiments. We are thus confident that this
approach allows insight into how transcriptome assem-
bly quality and gene expression profiling are impacted
by various factors and can provide guidance to practitio-
ners. In the following, we will highlight the major find-
ings on the basis of which we will assess the most
promising strategies and discuss areas that may need
more attention in the future.

Computing resources

Computing resources are still a limiting factor in smal-
ler laboratories when it comes to the analyses of RNA-
seq data. Our simulations generated ~14 TB (Terabyte)
of data and consumed a total of 300 000 h of computing
resources on 8–1000 cores (CPUs) using on average 128
GB (Gigabytes) of memory (up to 2 TB). To facilitate
de novo transcriptome assembly in a reasonable time
frame, a computer cluster should contain at least
8 cores and 256 GB of RAM and a fast storage system.
The mapping approach is computationally less demand-
ing and an 8-core cluster with 32 GB of RAM should
generally be sufficient. Downstream analyses like DE
can be performed on a desktop computer.

Transcriptome assembly

Sequencing strategy and general success. Overall, assembly
success was reassuringly high and robust across most
conditions. Translated to real situations, this suggests
that most of the expressed genes can indeed be recov-
ered in an experiment when an adequate number of
reads is used (Wang et al. 2011). As a rough point of
reference, we suggest sequence coverage of 500–8009

for most transcriptomes which currently corresponds to
one lane of sequencing on an Illumina HiSeq2000
[>100 million reads per lane, (Goldfeder et al. 2011)].
Sufficient read coverage also removes the necessity of
costly library normalization which has been suggested
to increase yields for low coverage data sets, mostly
produced with the 454 technology [(Ekblom et al. 2012),
but see (Künstner et al. 2010)]. Our results clearly advise
against normalization.
In theory, a single highly inbred individual should

ideally be used for transcriptome assembly. However,
the detrimental effects of polymorphic sites were
comparatively small in our simulations and were only
seen for extreme combinations of polymorphism and
sequencing error (p = 0.01; e = 0.01). This opens the
promising prospect that basically any wild caught indi-
vidual can be used to produce a reference transcriptome,
with good success across most realistic polymorphism
levels.

Mapping vs. de novo assembly. A major and rather unex-
pected finding was that mapping assemblies outper-
formed de novo assembly approaches across a broad
range of conditions. In general, mapping assemblies
recovered a larger proportion of the transcriptome,
although in more difficult cases with complex tran-
scriptomes, high error and polymorphism rates suffered
from lower accuracies. The drop in accuracy was, how-
ever, moderate and outweighed by the fact that map-
ping assemblies were more robust to mismappings
caused by badly annotated genes (chromosome status
‘unlocated’ or ‘random’). Moreover, direct mapping on
distant references has the advantage that each assem-
bled contig has a 1:1 orthologous gene name genuinely
assigned, which is vital for downstream biological infer-
ence (e.g. GO term analysis) and alleviates the problem
of gene name assignment (see below). Another advan-
tage of mapping assemblies is the reduced need for
computing power and time. The overall good perfor-
mance of mapping assemblies of up to 15% sequence
divergence opens the exciting possibility to use refer-
ence transcriptomes as distant as human-rhesus maca-
que or mouse-rat, which corresponds to tens of million
years of independent evolution (Miller et al. 2007). With
the ever increasing availability of genomes across a
diverse array of taxa (Genome 10K Community of Sci-
entists 2009), mapping assemblies will soon be a realis-
tic option for many organisms.

de novo assembly software. Among all three de novo assem-
bly softwares compared (TRANS-ABYSS, TRINITY, and SOAPDE-

NOVO-TRANS), the SOAPDENOVO-TRANS assembler
performed best across the entire range of conditions. TRI-
NITY assemblies appeared to be slightly more
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contiguous, which, however, was largely owing to its
tendency of producing chimeric contigs spanning more
than one gene. One noticeable shortcoming of SOAP-
DENOVO-TRANS was that under high values of
sequencing error and polymorphism levels, assemblies
were more fragmented. Also SOAP had very low TPR at
low expression levels (Fig. S13c, Supporting information).
In contrast to SOAPDENOVO-TRANS, TRINITY in

principle provides additional information about iso-
form/paralog/allele structure of the transcriptome
(Grabherr et al. 2011). Different isoforms of one gene are
problematic for gene annotations as well as gene expres-
sion analysis. Information on isoforms is thus highly
valuable, as for most genes, the true number of isoforms
is not known, even in model organisms (Wang et al.
2008). To address this problem, we simulated data where
each gene had only one isoform and still many isoforms
were erroneously inferred. This result admonishes to
caution in the interpretation of real data.

Gene name assignment

Gene name assignment is crucial for drawing biologi-
cally meaningful conclusions from RNA-seq experi-
ments and for comparing results among different
studies. As already mentioned, gene name assignment
comes for free in mapping approaches. In the case of
de novo assemblies, contigs provide no information about
the sequenced gene and need to be assigned to ortholo-
gous genes from (distantly) related genomes. Our results
suggest that faster suffix-tree based methods such as
NUCmer and PROmer work well for closely related spe-
cies, but are not sensitive enough to detect orthologs as
divergence increases (see Table S6, Supporting informa-
tion). For more distant references, BLAST-based orthology
detection seems to be a popular alternative and has been
widely used in genetic nonmodel organisms, e.g. to
annotate genes in fish (Elmer et al. 2010) or passerine
birds (Künstner et al. 2010; Wolf et al. 2010). In the case
of our simulation, BLAST2GO had higher assignment
success than NUCmer or PROmer, but also produced a
relatively high number of false assignments. Stringent
filtering on blast scores, alignment length and recipro-
cal-best-hits are thus crucial to guard against false detec-
tion of orthologous genes (Chen et al. 2007). Other faster
yet sensitive alignment programmes like SATSUMA and
SPINES (Grabherr et al. 2010), which in our case yielded
comparable results, can provide viable alternatives
(Kristensen et al. 2011).

Differential gene expression

As RNA-seq has arisen as a powerful and accurate
alternative to microarrays, it will increasingly be used

in ecological and evolutionary studies to infer differen-
tial expression among phenotypes or experimental con-
ditions (Lenz et al. 2012; Wolf et al. 2010). Our results
demonstrate that across a fairly wide range of condi-
tions, gene expression estimates were robust to most of
the parameters under investigation and power to detect
differentially expressed (DE) genes was generally high
while the amount of false positives was limited. Even
inference of isoform-specific (differential) expression
appears feasible, though, as expected, the presence of
isoforms had a negative effect on overall performance.
Similar to what we observed for transcriptome qual-

ity, mapping assemblies even to rather distant refer-
ences genomes (15% sequence divergence) provided
more accurate gene expression levels and outper-
formed DE inference of de novo assemblies. In contrast
to the results of other simulation studies (Hardcastle &
Kelly 2010; Kvam et al. 2012), we found that EDGER
robustly outperformed BAYSEQ which may be due to
an optimal choice of the dispersion prior with a
recently implemented EDGER function.
By far the most important factors influencing perfor-

mance were expression levels and fold-change levels
of differential expression. In our simulations, LFC lev-
els of 2 or higher were necessary to detect the large
majority of differentially expressed genes for average
and highly expressed genes. As expected, DE inference
for lowly expressed genes (<25 reads per library) per-
formed considerably worse, particularly so for SOAP-
DENOVO-TRANS. This strongly suggests that obtain-
ing high overall coverage is vital for successful RNA-
seq experiments.
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