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Abstract

Background: Microbial life dominates the earth, but many species are difficult or even impossible to study under laboratory
conditions. Sequencing DNA directly from the environment, a technique commonly referred to as metagenomics, is an
important tool for cataloging microbial life. This culture-independent approach involves collecting samples that include
microbes in them, extracting DNA from the samples, and sequencing the DNA. A sample may contain many different
microorganisms, macroorganisms, and even free-floating environmental DNA. A fundamental challenge in metagenomics
has been estimating the abundance of organisms in a sample based on the frequency with which the organism’s DNA was
observed in reads generated via DNA sequencing.

Methodology/Principal Findings: We created mixtures of ten microbial species for which genome sequences are known.
Each mixture contained an equal number of cells of each species. We then extracted DNA from the mixtures, sequenced the
DNA, and measured the frequency with which genomic regions from each organism was observed in the sequenced DNA.
We found that the observed frequency of reads mapping to each organism did not reflect the equal numbers of cells that
were known to be included in each mixture. The relative organism abundances varied significantly depending on the DNA
extraction and sequencing protocol utilized.

Conclusions/Significance: We describe a new data resource for measuring the accuracy of metagenomic binning methods,
created by in vitro-simulation of a metagenomic community. Our in vitro simulation can be used to complement previous in
silico benchmark studies. In constructing a synthetic community and sequencing its metagenome, we encountered several
sources of observation bias that likely affect most metagenomic experiments to date and present challenges for
comparative metagenomic studies. DNA preparation methods have a particularly profound effect in our study, implying
that samples prepared with different protocols are not suitable for comparative metagenomics.

Citation: Morgan JL, Darling AE, Eisen JA (2010) Metagenomic Sequencing of an In Vitro-Simulated Microbial Community. PLoS ONE 5(4): e10209. doi:10.1371/
journal.pone.0010209

Editor: Francisco Rodriguez-Valera, Universidad Miguel Hernandez, Spain

Received December 11, 2009; Accepted March 12, 2010; Published April 16, 2010

This is an open-access article distributed under the terms of the Creative Commons Public Domain declaration which stipulates that, once placed in the public
domain, this work may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose.

Funding: This project was funded primarily by Laboratory Directed Research and Development Program funds from the Lawrence Berkeley National Laboratory.
The work was conducted in part at the U.S. Department of Energy Joint Genome Institute which is supported by the Office of Science of the U.S. Department of
Energy under Contract No. DE-AC02-05CH11231. A. Darling was supported by NSF fellowship DBI-0630765. The funders had no role in study design, data
collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: Jonathan Eisen is an associate with PLoS as Editor-in-Chief of PLoS Biology.

* E-mail: jaeisen@ucdavis.edu

Introduction

The vast majority of life on earth is microbial, and efforts to

study many of these organisms via laboratory culture have met

with limited success, leading to use of the term ‘‘the uncultured

majority’’ when describing microbial life on earth [1]. Metage-

nomics holds promise as a means to access the uncultured majority

[2,3], and can be broadly defined as the study of microbial

communities using high-throughput DNA sequencing technology

without requirement for laboratory culture [4–7]. Metagenomics

might also offer insights into population dynamics of microbial

communities [8,9] and the roles played by individual community

members [10]. Toward that end, a typical metagenomic

sequencing experiment will identify a community of interest,

isolate total genomic DNA from that community, and perform

high throughput sequencing of random DNA fragments in the

isolated DNA. The procedure is commonly referred to as shotgun

metagenomics or environmental shotgun sequencing. Sequence

reads can then be assembled in the case of a low-complexity

sample [10], or assigned to taxonomic groupings using various

binning strategies without prior assembly [5,7,11]. As binning is a

difficult problem, many methods have been developed, each with

their own strengths [11–17].

Assuming the shotgun metagenomics protocol represents an

unbiased sampling of the community, one could analyze such data

to infer the abundance of individual species or functional units

such as genes across different communities and through time.

However, many sources of bias may exist in a shotgun

metagenomics protocol. These biases are not unique to random

sequencing of environmental DNA. They have also been

addressed in studies of uncultured microbial communities using

PCR-amplified 16S rRNA sequence data. For example, it has

been shown that differences in the cell wall and membrane

structures may cause DNA extraction to be more or less effective
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from some organisms [18,19], and differences in DNA sequencing

protocol might introduce biases in the resulting sequences [20].

We also expect that methods to assign metagenomic reads to

taxonomic groupings may introduce their own biases and

performance limitations [16].

In selecting a particular metagenomic protocol, an awareness of

alternative approaches and their limitations is essential. Towards this

end, others have endeavored to benchmark the various steps of a

typical metagenomic analysis. A few studies have attempted to

quantify the efficiency and organismal bias of various DNA extraction

protocols using environmental samples, but these have included

unknown, indigenous microbes [18,21–23]. One other benchmark of

metagenomic protocols focused mainly on the informatic challenge of

assigning reads from a priori unknown organisms to taxonomic groups

in a reference phylogeny [16]. In that in silico simulation, the authors

randomly sampled sequence reads from 113 isolate genomes, and

mixed them to create three ‘‘communities’’ of varying complexity.

While that type of informatic simulation of metagenomic reads is a

useful approach for benchmarking different binning methods, the

models used for such simulations simply can not capture all factors

affecting read sampling from a real metagenome sequencing

experiment. Even if the model complexity were increased, appropri-

ate values would need to be experimentally determined for the new

simulation model parameters.

In this work, we describe an in vitro metagenomic simulation

intended to inform and complement the in silico simulations used

by others for benchmarking. Using organisms for which completed

genome sequences were available, we created mixtures of cells

with equal quantities of each organism. We then isolated DNA

from the mixtures and used two approaches to obtain sequence

data. For all simulated metagenomic samples, we created small-

insert clone libraries that were end-sequenced using Sanger chain

termination sequencing [24] and capillary gel electrophoresis. For

one of the samples, we generated additional sequence using the

cloning-independent pyrosequencing method [25] on the Roche

GS20. The resulting sequence data were then analyzed for biases

introduced during metagenome sequencing. For this study,

organisms were chosen to represent a breadth of phylogenetic

distance, cell morphology, and genome characteristics in order to

provide useful test data for benchmarking binning methods. This

experiment was not designed to test specific hypotheses about how

those factors or others may influence the distribution of reads in a

metagenomic survey. Nevertheless, these data can be used to

determine appropriate parameter ranges for metagenomic simu-

lation studies, or directly as a test dataset for binning.

Results and Discussion

Constructing a simulated metagenome
Organism selection was guided by the data available in the

Genomes On Line Database as of November 2007 [26].

Pathogens, obligate symbionts, and obligate anaerobes were

removed from consideration for the simulated metagenome

because these organisms are difficult to culture in our laboratory

setting. We selected ten organisms representing all three domains

of life and several levels of phylogenetic divergence. Halobacterium

sp. NRC-1 [27] and Saccharomyces cerevisiae S288C [28] were

selected to represent the archaeal and eukaryotic domains,

respectively. Because it has been shown that cell membrane

structure can have a significant effect on DNA extraction

efficiency [18,19,22], we included both Gram-positive and

Gram-negative bacterial species. Five relatively closely-related

organisms were selected from among the lactic acid bacteria, a

clade of low-GC, Gram-positive Firmicutes (Pediococcus pentosaceous,

Lactobacillus brevis, Lactobacillus casei, Lactococcus lactis cremoris SK11,

and Lactococcus lactis cremoris IL140) [29]. To provide phylogenetic

breadth within the Bacteria, we also included Myxococcus xanthus

DK 1622 [30] (a delta-proteobacterium), Shewanella amazonensis

SB2B, GenBank Accession #CP000507, [31] (a gamma-proteo-

bacterium), and Acidothermus cellulolyticus 11B [32] (an Actinobac-

terium). Figure 1 gives the placement of the organisms on the tree

of life and Table 1 lists some general features of each organism.

These ten organisms were not selected to represent a real,

functional community, rather they were chosen to provide

sequence data that would best allow the testing of the accuracy

and specificity of various binning methods. To this end, we have

chosen five phylogenetically diverse species with very different

genome compositions and five species that are relatively closely

related to each other, with very similar genome compositions.

As described in Methods below, cultures for each organism were

grown and cells from each culture were counted using flow

cytometry. We then constructed two distinct simulated microbial

communities that were made by mixing all organisms with

different approaches (see Figure 2). The first approach involved

mixing the cultures directly prior to extracting DNA from the

collection of mixed cells. To this mixture, two DNA extraction

techniques were applied in parallel, including an enzymatic

extraction with a bead beater (referred to throughout as

‘‘EnzBB’’), and the Qiagen DNeasy kit (referred to throughout

as ‘‘DNeasy’’). Preliminary sequence data from this mixture

included no reads from the halophilic archaeon, Halobacterium sp.

NRC-1. One possible explanation for this observation is that upon

mixing, the high-salt culture medium in which the Halobacterium

cells were growing was diluted, causing them to lyse. If cell lysis

occured rapidly, before recovery of the mixed cell pellet, no DNA

would be recovered from the lysed cells. To address this possibility,

we made a second mixture of cells using a different approach. The

second approach involved pelleting a known number of cells from

each individual culture, mixing cell pellets, then performing DNA

extraction on the mixed pellets using an enzymatic DNA

extraction (referred to throughout as ‘‘Enz’’). Simulated metage-

nomic DNA samples were then subjected to high-throughput

sequencing using Sanger sequencing and pyrosequencing technol-

ogies (see Methods for a description of the sequencing protocols).

Finally, to assess DNA extraction efficiency for each organism in

isolation, an enzymatic extraction with a bead beating step

(EnzBB) was applied to each isolate culture separately. Table 1

documents the quantification of total DNA extracted from each

organism individually.

Taxonomic Assignment of Reads
For each simulated metagenome, we used a BLAST search [33] to

map quality-controlled reads back to the set of reference genomes,

yielding a count of reads assigned to each organism (see Methods for

details). A complete set of read mappings and summaries of the

numbers of reads assigned to each organism is given in Table 2.

Many reads did not map back to reference genomes using our

stringent criteria. Such reads may represent highly conserved

sequences that hit multiple genomes making unambiguous

mapping impossible, had too few high-quality bases, or they

may represent an unknown source of sequence library contami-

nation. To further investigate the origins of unmapped reads, we

searched those reads using BLAST against the NCBI non-

redundant nucleotide database (see Table 3). We find that many

unmapped reads do hit organisms present in our sample, but do so

with less than 95% sequence identity. Sequencing errors, either in

our data or in the published genome data, may contribute to this

category of reads. In general, the lower identity reads follow the

In Vitro Metagenome Simulation
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taxonomic abundance distribution of mapped high-identity reads.

We also found a substantial number of hits to parts of a Lactococcus

bacteriophage phismq8. This phage genome was not present

(lysogenized) in either of the two reference Lactococcus genome

sequences. All of the Lactococcus strains used for this study are the

same strains, from the same lab, that were the source for the

genome sequencing projects, suggesting that at least one of the

Lactococcus cultures had been infected with a virus of external origin

in the time since its genome was originally sequenced. The phage

may have been actively affecting one of the Lactococcus cultures.

Finally, several unmapped reads showed high identity to members

of the genus Bacillus. Those reads suggest a low level of Bacillus

contamination in one of the simulated metagenomes.

Observed and predicted number of reads for each
organism

By counting the number of reads mapped to each reference

genome and normalizing by the total read count, it is possible to

estimate the relative abundance of organisms in each simulated

metagenomic sample. Figure 3 shows the frequency at which reads

are observed for each organism in our samples. These observed

read frequencies can be considered as possibly biased estimates of

the organism relative abundance in our simulated environmental

samples.

Given that a known quantity of each organism was mixed in the

metagenomic simulation, we next investigated whether estimates

of organism relative abundance based on sequencing read counts

would match the predicted abundance given the way in which our

sample was created. To do so, we must first derive a predicted

relative DNA abundance based on the known cell count relative

abundances. Because we included an equal number of cells per

organism in our mixtures, a simple prediction would be that the

number of reads per organism in each sequencing library would be

directly proportional to their genome sizes. The relative

abundance predicted based on genome size and cell counts (cc*gs)

is shown in Figure 3. Using the cc*gs predictor of relative organism

abundance, we tested whether the observed abundances followed

the expected distribution. We found that that cc*gs is a poor

Figure 1. Phylogenetic distribution of organisms selected for the metagenomic simulation. A phylogenetic tree of three domains with
representative groups is shown. Organisms used in this study are indicated by *. The organisms used represent all known domains of life, include four
bacterial phyla, a variety of genome sizes, GC compositions, and cell wall types. Large font size indicates clades where multiple isolate genomes have
been collapsed into a single leaf node.
doi:10.1371/journal.pone.0010209.g001
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predictor of organism abundance in our sequence libraries (x2 test,

all p-values ,,0.001, Bonferroni multiple test correction).

However, some organisms in our experiment such as Halobacterium

may be polyploid [34], and for many microbes the copy number of

the entire (or some segments) of the chromosome can vary

depending on growth phase [35,36] or other factors [37]. Also, the

amount of DNA from an organism that is available to become part

of a sequencing library depends on the efficiency of the DNA

extraction protocol. In a mixed sample, organisms with thick cell

walls may yield relatively little DNA, leading to an under-

Table 1. Characteristics of organisms in the simulated metagenome.

Taxonomic group Organism
Genome size w/
plasmids (Mb) %GC

Cell density of
stock culture

Culture
volume into
mixture (mL)

Concentration of
isolate DNA
extractions (ng/ml)

% reads expected
in metagenomic
reads

Lactic Acid Bacteria
(Firmicutes)

Lactococcus lactis
cremoris IL1403

2529 35.7 175464 1096 141.09 7.75

Lactic Acid Bacteria
(Firmicutes)

Lactococcus lactis
cremoris SK11

2707 35.9 102564 1875 119.1 11.19

Lactic Acid Bacteria
(Firmicutes)

Pediococcus
pentosaceous

1800 37.4 1600000 120.19 414.41 2.5

Lactic Acid Bacteria
(Firmicutes)

Lactobacillus
casei

2988 46.6 909090 211.54 635.78 6.74

Lactic Acid Bacteria
(Firmicutes)

Lactobacillus
brevis

2398 46 333333 576.92 303.08 8.76

Gamma-proteobacteria Shewanella
amazonensis SB2B

4306 53 1025641 187.5 463.46 4.35

Delta-proteobacteria Myxococcus
xanthus DK

9139 68.9 200000 961.54 198.14 9.5

Actinobacteria Acidothermus
cellulolyticus 11B

2445 66.9 96154 2000 142.64 14.3

Eukaryota Saccharomyces
cerevisiae S288C

12096 38 196078 980.77 633.45 31.13

Archaea Halobacrerium sp.
NRC-1

2571 65.9 1000000 192.31 387.84 3.74

For each organism in the mixture, we give genome and organism characteristics alongside statistics for various stages of sample preparation. The cell density was
determined by flow cytometry. The stock cultures were mixed such that each organism contributed an equal number of cells to the mixture. DNA from an aliquot of
each culture was extracted using the EnzBB method and quantified. That quantity is used to calculate an expected representation of the organisms as a percentage of
sequence reads, given in the column ‘‘% expected in metagenomic reads.’’
doi:10.1371/journal.pone.0010209.t001

Figure 2. Outline of the steps involved in the creation and sequencing of the simulated metagenomic samples.
doi:10.1371/journal.pone.0010209.g002
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representation of that organism in the final sequencing library

[22].

For these reasons, simply counting cells and accounting for

genome size may not provide us with an accurate prediction of

relative organism DNA abundance. We developed an alternative

means to predict the relative DNA abundance of organisms by

extracting DNA from a known number of cells of each organism in

isolation and quantifying the amount of extracted DNA (see

Table 1). We did so using the extraction method (EnzBB) that has

been demonstrated in previous studies to achieve the maximum

DNA yield from even the most recalcitrant cells [19,38]. This

DNA quantification provides another way to estimate the amount

of DNA per cell that we should expect from the simulated

metagenomic samples. We predict the reads per organism to be

directly proportional to the amount of DNA that can be extracted

from each cell. Of course, this prediction based on isolate DNA

extraction (DNA quantification) does not provide a perfect

expectation of the relative organism abundance in extractions of

mixed communities, but it does, at least theoretically, better

account for the effects of DNA extraction efficiency and genome

copy number per cell. Nevertheless, the observed organism

abundance in our sequence libraries does not match the

expectation based on DNA quantification (x2 test, all p-values

,,0.001.)

Table 2. Mapped reads.

DNeasy EnzBB Enz

main add glyc main add glyc main add glyc pyrosequencing

Acidothermus 64.21 60.57 48.96 28.53 46.34 34.96 16.08 47.97 43.43 13.66

Halobacterium 0.15 0.10 0.95 0.03 0.32 0.70 1.28 0.19 4.50 1.19

Lb. brevis 3.92 7.56 13.00 7.58 9.78 19.22 15.81 6.48 18.76 17.34

Lb. casei 4.21 4.88 1.99 9.23 6.60 4.46 13.97 5.98 1.57 15.41

Lc. lactis SK11 0.02 0.00 0.00 0.74 0.24 0.28 0.13 0.00 0.12 0.22

Lc. lactis Il1403 4.43 3.03 1.71 29.34 7.63 8.50 5.10 4.28 2.35 4.42

Myxococcus 7.99 7.71 4.46 4.18 2.78 5.29 33.19 5.06 11.32 27.58

Pediococcus 0.24 0.21 0.38 5.21 5.88 3.90 0.29 0.36 0.09 0.27

Saccharomyces 2.76 0.46 0.00 8.42 0.00 0.00 0.78 0.04 0.00 0.42

Shewanella 12.08 15.48 28.56 6.73 20.43 22.70 13.36 29.64 17.87 19.48

Total mapped 11865 1945 1054 11552 1258 718 9054 5351 4338 495428

Total reads 14692 2625 1726 14418 2040 1348 11781 6542 6186 505962

For each simulated metagenome (columns), the total number of reads is given at bottom and the proportion of reads mapped to each of the ten reference organisms
are in rows. Lb = Lactobacillus, Lc = Lactococcus. For each of the three DNA extraction protocols, data are provided for the primary sequence libraries (‘‘main’’) as well as
for the additional libraries, created using the same protocol with (‘‘glyc’’) and without (‘‘add’’) glycerol added to the stock isolate cultures.
doi:10.1371/journal.pone.0010209.t002

Table 3. Sequence statistics by library.

%GC
avg. read
length total reads

Mapped
reads Unmapped reads

ambiguous hits
to ref orgs no hits to ref orgs

hits NCBI no hits to NCBI

Enz+Pyrosequencing 0.58 202 505962 495428 2354 8004 176

Enz+Sanger 0.56 578 11781 9054 364 272 2091

Additional Enz+Sanger 0.59 688 6542 5351 149 267 775

Glycerol Enz+Sanger 0.61 655 6186 4338 294 388 1166

EnzBB+Sanger 0.48 563 14418 11552 760 519 1587

Additional EnzBB+Sanger 0.56 665 2040 1258 39 266 477

Glycerol EnzBB+Sanger 0.52 699 1348 718 51 180 399

DNeasy+Sanger 0.6 568 14692 11865 759 592 1476

Additional DNeasy+Sanger 0.6 654 2625 1945 90 168 422

Glycerol DNeasy+Sanger 0.59 694 1726 1054 36 155 481

For each library, the average read length, percent G+C, total number of reads, and the numbers of mapped and unmapped reads are given. The unmapped reads fall
into 2 categories: 1) those that have BLAST hits to our reference organisms, but cannot be mapped to a single organism because they have high sequence identity to
more than one organism or because the sequence identity is below the 95% threshold; and 2) those that do not have BLAST hits to our reference organisms. Reads in
the second category are further subdivided into reads that do hit other organisms in the NCBI non-redundant nucleotide database and reads that do not.
doi:10.1371/journal.pone.0010209.t003
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While this experiment was not designed to test specific

hypotheses about how phylogeny, cell morphology, or genome

characteristics may affect the outcome of a metagenomic survey,

some interesting observations can be made. For example, because

they have been shown to be more recalcitrant to lysis, one might

expect that the organisms with the Gram-positive cell wall

structure might consistently be under-represented in our libraries

relative to the prediction based on isolate DNA extraction. This

was not this case in our libraries, where in any given sample, some

Gram-positive organisms were more abundant and others less

abundant relative to our prediction (Figure 3). One also might

expect that closely related organisms that share many genome

characteristics would show the same distribution under a given

preparation protocol. However, this is not the case with the five

lactic acid bacteria, wherein even two strains of the same named

species (Lactococcus lactis) differ in their read counts by more than an

order of magnitude. In the EnzBB library for example, of the

11552 mapped reads, 3389 reads mapped to the Lactococcus lactis

IL1403 genome while only 86 mapped to the Lactococcus lactis

SK11 genome (see Table 2 and Figure 3).

The difference in read frequencies among members of the same

named species cannot be ascribed to a lack of sequence differences

among the two strain’s genomes causing a failure in read

assignment. Whole-genome alignment using the Mauve genome

alignment software [39] reveals the two Lactococcus isolates have

approximately 87% average nucleotide identity thoughout their

genomes and fewer than 1% of subsequences of the length of our

reads lack differences to guide taxonomic assignment.

Of course, factors other than DNA extraction efficiency may

contribute to differences between the predicted number of reads

based on isolate DNA extraction and the observed number of

reads. These include 1) cloning bias, which refers to the

phenomenon whereby some DNA sequences are more readily

propagated in E. coli [40]; 2) sequencing bias, which can refer to

the propensity of the polymerase enzyme used for Sanger

sequencing to stall and fall off when regions of the molecule with

secondary structure are encountered [41] or to errors introduced

into pyrosequencing reads where there are homopolymeric runs

[42]; and 3) computational difficulties with accurately and

specifically binning reads. Future studies might attempt to

disentangle the contribution of each of these factors to overall bias.

Comparison of DNA extraction methods
In terms of the relative abundance of organisms based on

sequence reads, all metagenomic samples were significantly

different from each other and significantly different from the

estimated expected distribution (x2 test, p-value ,,0.001 for all

pairwise comparisons, see Table 2 for data.) Halobacterium sp.

NRC-1, Saccharomyces cerevisiae S288C, and Lactococcus lactis cremoris

SK11 were under-represented in all libraries relative to the

prediction based on isolate DNA extraction, whereas Acidothermus

cellulolyticus and Shewanella amazonensis SB2B were over-represented

in every library. Some organisms, e.g., Pediococcus pentosaceous,

Lactococcus lactis cremoris IL1403, and Myxococcus xanthus DK 1622

were much more abundant in one library than in others (Figure 3).

The results demonstrate that two libraries created from a single

mixture of organisms, but prepared using DNA that has been

extracted by different protocols (i.e., Enz, EnzBB, or DNeasy), can

produce reads that seem to represent two very different underlying

communities. Therefore, the purpose of a metagenomic survey

must be taken into consideration when choosing a DNA extraction

protocol. While using multiple DNA extraction procedures on a

single environmental sample can increase the likelihood that every

organism in an environment will be sampled, doing so can also

complicate quantitative comparisons of multiple samples.

Comparison of Sanger vs pyrosequencing
One advantage of sequencing with the pyrosequencing

technology over that of clone library-based (Sanger) methods is

the elimination of cloning bias. The Enz DNA extraction was split

into two samples (Figure 2), one of which was cloned and

sequenced using Sanger sequencing while the other was used to

construct a library for pyrosequencing. These two libraries, like all

others, yielded significantly different taxonomic distributions of

reads (all x2 tests have p-value ,,0.001.) However, the x2 statistic

was lower (x2 = 381.69) than any of the Sanger library pairwise

comparisons, all of which had x2.10397. This suggests that the

effect of DNA extraction is more pronounced than the bias

introduced by clone-based sequencing. Additionally, cloning bias

has been shown to be influenced by GC content [20,39], and in

this experiment, the GC content of the Sanger-sequenced sample

(56.0% GC) and the pyrosequenced sample (56.7% GC) using the

same DNA extraction protocol were very similar. On the other

Figure 3. Predicted and observed frequencies of sequence reads from each organism. The fraction of reads assigned to organisms for
each sample preparation method is shown at top. The fraction expected given the measured quantities of mixed DNA from each organism assuming
unbiased library prep and sequencing is given as ‘‘DNA quantification’’, and the fraction of reads predicted based on cell count and genome size is
given as ‘‘cc*gs prediction.’’ Sampling error was estimated assuming a multinomial distribution (not shown) and indicated that estimates of relative
abundance are accurate +/25% for dominant organisms given the number of Sanger reads obtained, and +/21% for pyrosequencing reads. Note
that the top two bars labeled Enz+Pyrosequencing and Enz+Sanger offer a comparison of Sanger and pyrosequencing technology on the same
extracted DNA.
doi:10.1371/journal.pone.0010209.g003
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hand, the GC content of the Sanger-sequenced libraries, using

different DNA-extraction methods, ranged from 0.48% to 0.61%

(Table 3).

The Enz+pyrosequenced metagenome differs from the En-

z+Sanger metagenome in the types of reads that failed taxonomic

assignment. Whereas very few Enz+Sanger reads failing taxo-

nomic assignment had recognizable sequence identity to

organisms in the NCBI non-redundant nucleotide database

(547/2638 or 21% of unmapped reads), the majority of the

unmapped pyrosequencing reads did have recognizable identity

to NCBI database sequences (10171/10347, 98%). Both methods

had a modest number of reads that failed taxonomic assignment

because the read’s sequence identity to the reference organism

was below the stringent identity threshold (316 Enz+Sanger

reads, between 791 and 2932 Enz+pyrosequencing reads).

Additionally, about 0.3% of the Enz+pyrosequencing unmapped

reads exhibited sequence identity to an unknown member of the

Bacillus genus. We speculate that a small amount of Bacillus DNA

may have entered the Enz+pyrosequencing sample prior to

emulsion PCR (see Methods), which may have amplified the

contaminant.

Additional simulated metagenomes
As mentioned before, the primary purpose of this experiment

was to generate sequence data that could be used to test the

computational tools that are used to analyze metagenomic

sequence data. With this in mind, we opted to use several DNA

extraction methods in order to maximize the likelihood of

recovering sequence data for every organism in our sample. We

did not perform technical replicates for each DNA extraction

method. However, post hoc comparisons of the different DNA

extraction protocols did produce interesting results, prompting us

to perform again the same experiments on a smaller scale. While

these are not perfect technical replicates, they were performed

using exactly the same starting material. These additional

simulated metagenomes were created by thawing additional

aliquots of the primary frozen culture stocks and mixing them as

described below. We did two additional simulations for each of the

Enz, EnzBB, and DNeasy protocols and performed Sanger

sequencing on the extracted DNA (Figure 4). One of the

additional simulations used frozen stock of isolate cultures, the

other used frozen stock of isolate cultures with glycerol added to a

final concentration of 10%. The so-constructed sequence libraries

are not technical replicates of the simulation because they include

effects introduced by long-term frozen storage of isolate cultures at

280uC with and without glycerol. Use of glycerol should help

prevent cells from lysing, so if large differences were observed

between the repeated samples with and without glycerol, it would

be reasonable to suspect that cell lysis is an important factor to

consider when doing metagenomics with frozen samples.

For each additional simulation, we began by retrieving aliquots

of Mix #1 (for the additional EnzBB and DNeasy libraries) or by

re-creating Mix #2 (for the Enz library). For the additional

libraries using glycerol stocks, both Mix #1 and Mix #2 were re-

created from the individual stock cultures. As before, the taxon

relative abundance distribution for each library is significantly

different from every other library (x2 test, all p-values ,0.001).

However, if we consider the original libraries to represent an

expected organism relative abundance for each DNA extraction

protocol, then we can compare the average Chi-square statistic

within each DNA extraction protocol to determine which protocol

yields the most consistent results. The average Chi-square statistic

for the additional libraries is much lower for the DNeasy

extraction (average x2 = 377.26) than for either the Enz extraction

(average x2 = 5013.12) or the EnzBB extraction (average

x2 = 774.96) protocols. This result indicates that the repeatability

of the kit extraction method is better than the two other extraction

methods (Figure 4). This is in line with expectation, since a possible

advantage of kit-based DNA extraction protocols is that variation

due to stochastic error should be minimized.

Conclusion
In silico simulations of metagenome sequencing are cheap, quick,

and easy, The type of in vitro simulation presented here is

comparatively expensive, difficult, time-consuming, but captures

bias in the metagenomic sampling procedure more faithfully than

in silico simulations. Studies such as ours add a layer of complexity

and biological realism beyond that attainable with computational

simulations alone. With in silico simulations, one can model

complex and highly diverse communities, but the models used to

sample reads from isolate genomic data are limited in their ability

to capture biases introduced by experimental protocol. In

particular, biases in sequence coverage (per genome) can be due

to growth conditions, organismal growth phase, DNA extraction

efficiency, cloning bias, sequencing efficiency, or relative genome

copy number.

In no case did the relative organism abundance in our sequence

libraries reflect the known composition of our simulated

Figure 4. Additional sequence data for three of the simulated metagenomes. Bars represent the observed frequency of organisms in
sequenced metagenomes. We constructed and sequenced metagenomes according to the Enz, EnzBB, and DNeasy protocols using the long term
frozen isolate culture stocks with glycerol and without glycerol. Reads were mapped to reference genomes as described in Methods. The additional
metagenomes show some differences to each of the original libraries. Such differences might be caused by variation across DNA preparations and
sequencing runs, age of the frozen samples, or other factors. The libraries constructed using the DNeasy Kit produced the most consistent results.
doi:10.1371/journal.pone.0010209.g004
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community. This suggests that sequencing-based methods alone

are insufficient to assess the relative abundance of organisms in an

environmental sample. If calibrated by another method, such as

fluorescent microscopy, sequencing might be more useful in this

regard. The results also highlight the need to standardize as many

laboratory techniques as possible when comparing metagenomic

samples across environments, timescales, or environmental

conditions. Currently, there is no standard approach for

metagenomic surveys, making it difficult to make useful inferences

when comparing data among different studies.

It is important to note that the purpose of a given metagenomic

sampling effort will vary, and the methods used should be chosen to

best suit that purpose. For example, here we found that using a kit-

based DNA extraction protocol produced the most consistent results

with repeated sampling. This is important if the goal of a study is to

track differences across environments, treatments, or timescales.

However, if the goal is to fully catalog all organisms or to know with

certainty the relative abundance of organisms in a sample, our results

suggest that the kit-based DNA extraction could offer the worst

performance of the methods tested here. Of course, there are other

factors to consider: the DNA yield from kit-based DNA extractions is

considerably lower than alternative methods, it is typically of a lower

molecular weight, and it is more costly to acquire.

Our ability to make strong conclusions about the source of

variation across samples is unfortunately limited by our lack of

technical replicates. However, we find the magnitude of this

variation striking, even in this simple, well-understood, artificially

constructed microbial ‘‘community.’’ Future experiments to tease

apart the sources of bias, especially those designed with specific

natural communities in mind, will be valuable. In addition to

providing sequence data that can be used for benchmarking

analytical techniques for metagenomics, it is our hope that this

type of simulation can help aid model development for future in

silico simulations. For this purpose, sequence data generated in our

study is available via the IMG/M [43], on the BioTorrents [44]file

sharing site (http://www.biotorrents.net/details.php?id = 47), and

via the NCBI’s Trace and Short Read Archives.

Methods

Laboratory Methods
Cell culture. Myxococcus xanthus DK1622 cells were grown in

CTTYE (1% Casitone [Difco], 10 mM Tris-HCl (pH 7.6), 1 mM

KH2PO4, 8 mM MgSO4) broth at 33uC with vigorous aeration.

Cells were harvested when a Klett-Summerson colorimeter read

100 Klett units, or approximately 26108 cells/ml. Acidothermus

cellulolyticus 11B was grown in liquid culture at 55 degrees C on a

shaker at 150 rpm. The growth medium consisted of American

Type Culture Collection medium 1473, modified by use of glucose

(5 g/l) in place of cellulose, pH 5.2–5.5. The five lactic acid

bacteria were provided as streaked MRS agar plates, from which

single colonies were used to start pure cultures in liquid MRS

broth. Halobacterium sp. NRC-1 (ATCC#700922), Saccharomyces

cerevisiae S288C (ATCC#204508), and Shewanella amazonensis SB2B

(ATCC# BAA-1098) were obtained as freeze-dried stocks and

used per recommended protocol to start cultures in the prescribed

media. Cultures were grown 12–48 hours until turbid. The cell

density of each culture was determined by counting DAPI-stained

cells using a Cytopeia Influx flow cytometer. Immediately after

counting, the cultures were aliquoted into ten 2 mL cryotubes,

flash-frozen in liquid nitrogen and stored at 280uC. Glycerol was

added to one of the tubes before freezing to make a 10% glycerol

stock solution (except for the Myxococcus xanthus, which was

provided as flash-frozen liquid culture.)

Mixing. Two techniques were employed for mixing. Mix
#1: One tube of each of the ten cultures was thawed on ice. An

aliquot from every tube was added to a single new tube such that

each organism contributed an equal number of cells to the final

mixture. This final mixture was aliquoted into four 2 mL

cryotubes which were flash-frozen and returned to 280uC.

Immediately prior to DNA extraction, one of the 2 mL

cryotubes of the final mixture was centrifuged for 10 minutes at

10,000 rpm to pellet cells. The supernatant was removed, and the

cell pellet was resuspended in TES buffer (10 mM Tris-HCl

pH 7.5, 1 mM EDTA, 100 mM NaCl). Mix #2: One tube of

each of the ten cultures was thawed on ice. An aliquot from every

tube was transferred to a new tube so that the new set of tubes

contained an equal number of cells per tube. Immediately prior to

DNA extraction, each tube was centrifuged for 10 minutes at

10,000 rpm to pellet the cells. Each cell pellet was resuspended in

the lysis buffer that is provided with the DNeasy kit (Qiagen,

Valencia, CA), and the contents of all ten tubes were pooled into a

single tube.

DNA extraction. DNA Prep #1 (EnzBB): The resuspended

cells were incubated with a final concentration of 50 U/uL

lysozyme (Ready-Lyse, Epicentre Technologies) at room

temperature for 30 minutes. Further lysis was accomplished by

the addition of proteinase-k and SDS to a final concentration of

0.5 mg/mL and 1%, respectively, and incubation at 55uC for

4 hours. Finally, the lysate was subjected to mechanical disruption

with a bead beater (BioSpec Products, Inc., Bartlesville, OK), on

the Homogenize setting for 3 minutes. Protein removal was

accomplished by extracting twice with an equal volume of 25:24:1

phenol:chloroform:isoamyl alchol. The aqueous phase was

incubated at 220uC for 30 minutes with 2.5 volumes of 100%

ethanol and 0.1 volumes of 3 M sodium acetate before

centrifugation at 16,000 g for 30 minutes at 4uC. The DNA

pellet was washed with cold 70% ethanol and allowed to air dry

before resuspension in TE (10 mM Tris-HCl pH 7.5, 1 mM

EDTA.) DNA quantitation was performed using the Qbit

fluorometer (Invitrogen).

DNA Prep#2 (DNeasy): Qiagen’s DNeasy kit (Qiagen,

Valencia, CA) per manufacturer’s protocol for bacterial cultures.

DNA Prep #3 (Enz): Identical protocol to DNA Prep#1 but

without the bead beating step.

Library construction and sequencing. Three small-insert

(,2 kb) libraries were constructed by randomly shearing 10 mg of

metagenomic DNA using a HydroShear (GeneMachines, San

Carlos, CA). The sheared DNA was electrophoresed on an

agarose gel, and fragments in the 2–3 kb range were excised and

purified using the QIAquick Gel Extraction Kit (Qiagen, Valencia,

CA). The ends of the DNA fragments were made blunt by

incubation, in the presence of dNTPs, with T4 DNA Polymerase

and Klenow fragment. Fragments were ligated into the pUC18

vector using the Fast-Link(TM) Ligation Kit (Epicentre, Madison,

WI) and transformed via electroporation into ElectroMAX

DH10B(TM) Cells (Invitrogen, Carlsbad, CA) and plated onto

agar plates with X-gal and 150 mg/mL Carbenicillin. Colony

PCR (20 colonies) was used to verify a .10% insertless rate and

,1.5 kb insert size. White colonies were arrayed into 384-well

plates for sequencing.

For Sanger sequencing, plasmids were amplified by rolling circle

amplification using the TempliPhi(TM) DNA Sequencing Ampli-

fication Kit (Amersham Biosciences, Piscataway, NJ) and

sequenced using the M13 (228 or 240) primers with the BigDye

kit (Applied Biosystems, Foster City, CA). Sequencing reactions

were purified using magnetic beads and run on an ABI PRISM

3730 (Applied Biosystems) sequencing machine.
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The library for pyrosequencing was constructed using ,5 mg of

metagenomic DNA, which was nebulized (sheared into small

fragments) with nitrogen and purified with the MinElute PCR

Purification Kit (Qiagen, Valencia, CA). The GS20 Library Prep

Kit was used per manufacturer’s protocol to make a ssDNA library

suitable for amplification using the GS20 emPCR Kit and then

prepared for sequencing on the Genome Sequencer 20 Instrument

using the GS 20 Sequencing Kit.
Sequence data submission. All Sanger-generated sequence

data have been submitted to the NCBI Trace Archives, with Trace

Archive ID numbers 2261924487 through 2262015859. The

pyrosequencing-generated sequence data have been submitted to

the NCBI Short Read Archives with Accession number

SRA010765.1.

Sequence Analysis
Sequence trimming. Vector sequences were removed with

cross_match, a component of the Phrap software package [45] and

low-quality bases, i.e. those with a PHRED [46] quality score of

Q. = 15, were converted to ‘‘N’’s using JAZZ, the JGI’s in-house

genome sequence assembly algorithm.
Taxonomic assignment of reads. We mapped reads back

to reference genomes by means of BLAST search [33]. A BLAST

database containing the nucleotide sequence of each of the ten

genomes (chromosomes and plasmids) was constructed. Reads

were searched against that BLAST database, and low-scoring hits

(e-value.0.0001) were discarded except for the pyrosequencing-

generated reads, for which a threshold of 0.01 was used. Reads not

passing BLAST’s low complexity filter were considered to have

failed QC, this happened frequently for reads containing a large

number of ,Q15 bases replaced with N. Some reads contained a

high fraction of N bases but still passed the low complexity filter,

such reads frequently had no significant hit to the 10 reference

organisms. Reads with hits were assigned to the genome

corresponding to their top BLAST hit only if the top hit had

sequence identity .95% and the next highest hit to a different

organism had a bit score at least 20 points lower. Such reads are

considered ‘‘mapped.’’ In order to investigate possible

contamination in sequence libraries, reads without hits were

searched against the NCBI non-redundant amino acid database in

parallel using mpiBLAST [47].
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