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Abstract
Background: The 99% of bacteria in the environment that are recalcitrant to culturing have
spurred the development of metagenomics, a culture-independent approach to sample and
characterize microbial genomes. Massive datasets of metagenomic sequences have been
accumulated, but analysis of these sequences has focused primarily on the descriptive comparison
of the relative abundance of proteins that belong to specific functional categories. More robust
statistical methods are needed to make inferences from metagenomic data. In this study, we
developed and applied a suite of tools to describe and compare the richness, membership, and
structure of microbial communities using peptide fragment sequences extracted from metagenomic
sequence data.

Results: Application of these tools to acid mine drainage, soil, and whale fall metagenomic
sequence collections revealed groups of peptide fragments with a relatively high abundance and no
known function. When combined with analysis of 16S rRNA gene fragments from the same
communities these tools enabled us to demonstrate that although there was no overlap in the types
of 16S rRNA gene sequence observed, there was a core collection of operational protein families
that was shared among the three environments.

Conclusion: The results of comparisons between the three habitats were surprising considering
the relatively low overlap of membership and the distinctively different characteristics of the three
habitats. These tools will facilitate the use of metagenomics to pursue statistically sound genome-
based ecological analyses.

Background
Metagenomics, the culture-independent isolation and
characterization of DNA from uncultured microorgan-
isms [1], has facilitated the analysis of the functional bio-
diversity harbored in the large reservoir of uncultured
bacteria and archaea [2-4]. Although early metagenomic
studies identified individual genes or activities of interest,
recent advances in genome sequencing technologies have

made obtaining a complete metagenomic sequence more
tractable. Sequence-based approaches combined with
functional expression approaches have the potential to
identify novel genes important for industrial and ecologi-
cal applications. Sequence-based approaches have
recently been applied to DNA obtained from viruses [5,6],
seawater [7-10], wastewater [11,12], sediment [13],
sponges [14], acid mine drainage [15], marine worms

Published: 23 January 2008

BMC Bioinformatics 2008, 9:34 doi:10.1186/1471-2105-9-34

Received: 8 May 2007
Accepted: 23 January 2008

This article is available from: http://www.biomedcentral.com/1471-2105/9/34

© 2008 Schloss and Handelsman; licensee BioMed Central Ltd. 
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), 
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Page 1 of 15
(page number not for citation purposes)

http://www.biomedcentral.com/1471-2105/9/34
http://creativecommons.org/licenses/by/2.0
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18215273
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/about/charter/


BMC Bioinformatics 2008, 9:34 http://www.biomedcentral.com/1471-2105/9/34
[16], human gut [17], soil [18], and decomposing whale
carcasses [18]. The analysis used to describe these commu-
nities has primarily focused on the descriptive characteri-
zation and comparison of the relative abundance of
proteins that belong to specific functional categories.

Attempts to analyze metagenomic sequences have proven
that a metagenomic sequence is more than just a large
genome sequencing project. First, the goal of most
genome sequence projects is a closed genome sequence
where every nucleotide is represented by a desired
number of independent sequence reads. In metagenom-
ics, the probability of finding overlapping sequence reads
is low in most environments [19]. The probability that
overlapping sequence reads are from the same population
of bacteria or archaea is even lower so that contigs that are
formed are out of necessity chimeras of different genomes
that may not even be from the same phylum [20]. Second,
a closed genome represents a statistical population of the
genes harbored by that organism; therefore, comparing
genome sequences for the presence or absence of genes is
straightforward. Since it is not possible to close a metage-
nome, every metagenomic sequence collection represents
a statistical sample of the genomes in an environment.
Therefore, it is necessary to treat the comparison of com-
munities as a statistical problem. Third, although lab-
based cultures that are sequenced do evolve, the differ-
ences between lab stocks is minimal compared to the
changes faced by natural communities over short periods
of time. This makes it difficult to reanalyze a community
once a genome sequence has been obtained to improve
annotations and understand gene expression.

Five general approaches have been taken to bring statisti-
cal analysis to the analysis of metagenomic sequences.
The first adapts genomics-based approaches to metagen-
omics by constructing and curating databases to aid in the
annotation and analysis of genes and the contigs they
reside on [21,22]. Unfortunately, although such databases
provide a critical infrastructure, given the large number of
ORFs that have no known function (e.g. 69% in the Sar-
gasso Sea [7]) and the paucity of contigs formed from
many sequencing projects (e.g. <1% in the soil [18]), such
database searches will be of limited value for comparative
metagenomics. The second approach to analyzing
metagenomic sequences has been based on the compari-
son on the relative abundance of annotation categories
within the different sequence collections and within data-
bases of assembled genomes [9,10,17,18,23]; these meth-
ods implicitly assume that the metagenomic sequences
represent a statistical population and/or that the reference
databases represent the normal distribution of genes in
communities. A third set of approaches attempts to assign
a phylogenetic origin for a sequence fragment in the
absence of a phylogenetic anchor (e.g. 16S rRNA gene)

using nucleotide frequency analysis or sequence signa-
tures [24-27]. Such methods are limited for use with most
environments because of the difficulty in forming contigs
that are long enough to carry out a robust analysis and
assume that the contigs that form are not chimeric. A
fourth approach has attempted to compare communities
without an annotation. These have attempted to quantify
the species richness of communities based on the distribu-
tion of sequence read depth among contigs [7] and to
compare the diversity of communities based on the rela-
tive frequency of different length oligonucleotides in the
DNA sequence pool [28]. Finally, there have been
attempts to using traditional population biology by ana-
lyzing the diversity of specific families of genes found in
metagenomic collections [29].

Based on previous metagenomic sequencing efforts, we
were interested in developing statistical tools to compare
the richness, membership, and structure of the comple-
ment of ORFs from multiple communities in which
assembly of the entire genomes is not possible. To address
this problem, we adapted a set of statistical tools designed
to analyze collections of 16S rRNA gene sequences to the
analysis of protein coding genes [30-33]. Our goal was to
provide additional tools to make statistical and ecological
inferences using metagenomic sequence data. Instead of
using a traditional pairwise DNA distance matrix obtained
from a sequence alignment of homologous genes as is
done with 16S rRNA genes, we used BLAST score ratios
(BSRs) to develop a distance matrix that represents the
similarity of ORFs across homologous groups [34]. To
make comparisons among communities, we propose
grouping ORFs into operational protein families (OPFs)
which are analogous to operational taxonomic units
(OTUs) derived from 16S rRNA gene sequences.

Results and discussion
A new distance matrix
The goal of this aspect of the work was to develop a
method to compare sequence alignments that circum-
vented the considerable computational effort required to
obtain every possible global sequence alignment and pair-
wise distance. We used local alignments provided in
BLAST and the resulting pairwise BLAST scores to generate
BSRs. The BSRs approximate the fraction of identical
amino acids between two peptide fragments so that a BSR
value of 0.30 between two fragments means that they are
approximately 30% identical over their full length. By
analogy to the analysis of 16S rRNA gene sequences of
uncultured bacteria where OTUs are developed based on
a distance matrix, we propose using BSR values to define
OPFs. Depending on the goals of the analysis an OPF can
be defined as necessary. For illustrative purposes and
based on previous implementations of BSRs for compara-
tive genomics applications [34,35], unless otherwise indi-
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cated we will operationally define an OPF as a collection
of fragments that have a BSR greater than 0.30.

To assess the feasibility of using peptide fragments from
individual sequence reads, we identified peptide frag-
ments from the individual sequence reads used to assem-
ble the Bacillus anthracis, str. Ames genome (GenBank
Accession NC_003997, [36]), which contains 4,514 ORFs
that were longer than 100 aa. From the individual
sequence reads, we identified 92,220 peptide fragments
longer than 100 aa. The computational effort required for
the pairwise alignment and distance calculation among
92,220 ORFs was prohibitive. Because we expected a
majority of the peptide pairs would not have significant
similarity, we used BLAST to identify those comparisons
that had significant similarity and to calculate BSRs as a
surrogate for similarity or distance values (distance = 1-
BSR). Instead of generating a 92,220 × 92,220 matrix with
8.5 × 109 values, we took advantage of the sparseness of
the matrix to simplify the calculations and construct a set
of three linked-lists in which each list contained the row,
column, and BSR values of the full BSR matrix. Since the
BSR for a peptide fragment compared to itself is 1.0 and
the BSR for a non-significant comparison is 0.0, the corre-
sponding entries in the linked lists could be removed.
Once this was completed, there were 2.1 × 106 values,
which represented a significant reduction in the memory
required to store the data.

MG-DOTUR
To assign peptide fragments to OPFs we rewrote the com-
puter code for DOTUR to be compatible with sparse BSR
matrices. DOTUR is used to assign collections of 16S
rRNA gene sequences and to use the resulting frequency
distribution of sequences among OTUs to estimate rich-
ness and diversity (Table 1). By analogy, MG-DOTUR
assigns peptide fragments to OPFs and estimates the rich-
ness and diversity of OPFs for any desired OPF definition.
Two classes of methods are available to estimate richness
based on frequency distributions. The first uses parametric
distributions such as the lognormal distribution to predict

the number of unseen groups in a community [37].
Although it is often assumed that microbial communities
follow a lognormal distribution, there are no published
examples in the microbial ecology literature for which the
observed data support such an assumption. This is prima-
rily due to the difficulty in obtaining a sufficient number
of observations to implement these methods. An alterna-
tive approach uses non-parametric estimators that do not
assume an underlying frequency distribution and are rel-
atively easy to compute. These estimators are imple-
mented in DOTUR and MG-DOTUR.

Based on the observed frequency distribution of peptide
fragments in each OPF0.30, we applied the Chao1, ACE,
and interpolated Jackknife richness estimators to predict
the OPF0.30 richness. The predicted OPF richness was
approximately three times greater than the OPF richness
that was observed in the assembled B. anthracis genome
(Table 1). When we mapped each OPF from the closed
genome to the OPFs from the individual sequence reads
we found that each OPF from the closed genome was
linked to an average of 3.08 (s.d. = 2.75) OPFs from the
sequence reads. Further inspection showed that the multi-
ple OPFs from the sequence reads corresponded to differ-
ent regions of long ORFs from the closed genome
sequence. Similar results have been observed when
attempting to estimate the number of expressed genes
using expressed sequence tags [38].

To overcome this problem, we developed a method of
merging OPFs from the sequence reads to obtain a more
meaningful OPF distribution. For two OPFs to merge, we
required that the carboxyl-terminus of at least one
sequence in the first OPF overlap with the amino-termi-
nus of at least one sequence in the second OPF by at least
5 amino acids. Furthermore, we incorporated a BSR pen-
alty so that for two OPFs to merge the overlapping region
had to have a BSR greater than the BSR currently being
used to form clusters. We used penalties of 0.00, 0.05,
0.10, 0.15, and 0.20 (Table 1). We then applied this merg-
ing scheme to the OPFs from the sequence reads and cal-

Table 1: Tools used to describe and compare microbial communities.

Tool Application Input Reference

DOTUR/MG-DOTUR Assigns sequences to OTUs based on genetic distance between 
sequences and constructs rarefaction curves and collector's curves 
for richness and diversity estimators

Distance Matrix or BLAST Table [30]

SONS Generates collector's curves for estimates of the fraction and 
richness of OTUs shared between communities

OTU Designation [56]

∫-LIBSHUFF/MG-LIBSHUFF Tests whether the structures of two communities are the same, 
different, or subsets of one another using the Cramer-von Mises 
statistic

Distance Matrix or BLAST Table [31, 32]

AMOVA/MG-AMOVA Determines whether two or more communities differ significantly in 
genetic diversity using an analysis of variance-type formulation

Distance Matrix or BLAST Table [33, 47, 48]
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culated two types of error [38]. Type I errors corresponded
to the fraction of OPFs from the closed genome that
mapped to multiple OPFs from the sequence reads. Type
II errors corresponded to the fraction of OPFs from the
sequence reads that corresponded to different OPFs from
the closed genome (Table 2). We found that as we
increased the penalty, the Type I error decreased and the
Type II error increased. Based on this analysis, we decided
to implement a penalty of 0.15 because both types of error
were 7.1 and 7.4%, respectively. When the resulting fre-
quency distribution was used to calculate collector's
curves using the observed and predicted richness, the
curves converged towards the true OPF richness (Fig. 1A).
This was used to further validate the choice of penalty. A
limitation of this approach is that the resulting number of
peptide fragments in a merged OPF is a product of the
length of the complete ORF and the relative abundance of
the ORF in the metagenome. Therefore, we will report
OPF richness from merged analysis and annotations from
both merged and non-merged analyses.

Comparing membership and structure using OPFs
Other tools have been developed to compare the mem-
bership (e.g. SONS) and structure (e.g. ∫-LIBSHUFF and
AMOVA) of microbial communities using 16S rRNA gene
sequences. Again, by analogy we were interested in using
OPFs and BSRs to compare microbial communities using
metagenomic sequences. SONS uses the output of
DOTUR and MG-DOTUR to complete its analysis and
required no further modification for use with metagen-
omic sequences. ∫-LIBSHUFF and AMOVA were modified
to use the sparse matrix data representation used in MG-
DOTUR. The resulting programs were designated MG-LIB-
SHUFF and MG-AMOVA. To test these programs, we ran-
domly divided the 92,220 B. anthracis peptide fragments
into two artificial communities that were each represented
by 46,110 peptide fragments.

We first applied SONS to these two communities to com-
pare the membership and structure of the artificial com-
munities using OPFs. We calculated the shared OPF
richness using the Chao non-parametric estimator of
shared richness and obtained a value of 3,561 OPFs.
Although this estimate of shared richness is lower than
95% confidence interval observed for the total collection
of peptide fragments using the Chao1, ACE, or Jackknife
estimators, the shard Chao estimator was still increasing
with additional sampling (Fig. 1B). This indicates that if
sequencing had continued the estimate of shared richness
would have probably overlapped eventually. The abun-
dance-based Jaccard (Jabund) estimate of similarity was
1.00, which predicted that all of the peptide fragments
belonged to shared OPFs0.30. Yue and Clayton's measure
of community overlap, θ, was 0.97, which indicated that
the distribution of peptide fragments among OPFs was
the same in both artificial communities. These results
indicate that SONS is amenable to analyzing OPFs to
detect similarity between the memberships and structures
of different communities.

An alternative approach to comparing community struc-
tures is to perform hypothesis tests. AMOVA uses an anal-
ysis of variance (ANOVA)-type framework to test the
hypothesis that the difference in genetic diversity between
two or more communities is not significantly different
than the diversity within each community. We imple-
mented this analysis in a program designated MG-
AMOVA to perform a single-classification analysis. Our
comparison of two randomly generated B. anthracis pep-
tide fragment pseudo-communities revealed that the
observed differences between the two pseudo-communi-
ties were not statistically significant (p > 0.05). Next we
modified the program ∫-LIBSHUFF to create MG-LIB-
SHUFF to test the hypothesis that two communities have
the same structures. As expected, the differences in struc-
ture between the two pseudo-communities were not sta-

Table 2: Summary of errors and richness estimates when different criteria were used to merge OPFs. OPFs were merged when at 
least one peptide fragment in each OPF overlapped at least 5 aa and had a BSR value that was above the user specified level by the 
merge penalty. The type I error rate is the fraction of OPFs from the closed genome that correspond to multiple OPFs from the 
individual sequence reads. The type II error rate is the fraction of OPFs from the individual sequence reads that corresponded to more 
than one OPF from the closed genome sequence.

Merge Penalty Type I Error Rate Type II Error Rate Observed Richness Richness Estimation (True Richness = 3,730)

Chao1 ACE Jackknife

Penalty = 0.00 0.063 0.129 2,927 3,038 2,976 3,137
Penalty = 0.05 0.067 0.100 3,223 3,332 3,271 3,413
Penalty = 0.10 0.071 0.074 3,462 3,574 3,510 3,653
Penalty = 0.15 0.080 0.056 3,642 3,757 3,691 3,839
Penalty = 0.20 0.091 0.046 3,810 3,925 3,858 4,004

No merge 0.719 0.003 11,538 11,668 11,616 11,968
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Analysis of the richness and community membership when peptide fragments identified in individual sequence reads were used to assemble the Bacillus anthracis strFigure 1
Analysis of the richness and community membership when peptide fragments identified in individual sequence reads were used 
to assemble the Bacillus anthracis str. Ames genome sequence. (A) The collector's curves for three non-parametric richness 
estimators and observed richness using individual sequence reads compared to the OPF richness of the assembled genome 
(horizontal black line). The solid lines represent the richness of non-merged OPFs and the dashed lines represent the richness 
of merged OPFs with a penalty of 0.15. (B) Collector's curves of parameters describing the similarity between two randomly 
selected subsets of peptide fragments.
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tistically significant (P > 0.05). Each of these comparisons
indicate that we can make statistical comparisons between
the membership and structure of microbial communities
using peptide fragments identified in single sequence
reads from metagenomic data.

Acid Mine Drainage
Tyson et al. [15] used metagenomic sequencing to analyze
a biofilm growing in acid mine drainage (AMD) that had
a pH below 1.0. They obtained 322 archaeal and bacterial
16S rRNA gene sequences and 103,462 random paired
sequence reads, which represented 76.2 Gbp of DNA. We
used DOTUR to assign 16S rRNA gene sequences to nine
OTUs and predicted there were an additional three OTUs
(95% confidence interval [95% CI] = 0 to 8) that were not
observed (Fig. 2A). The most abundant OTU was similar
to Leptospirillum ferriphilum (n = 247) 16S rRNA gene
sequences.

Next, we used MG-DOTUR to assign 99,419 peptide frag-
ments to 10,235 merged OPFs. The dominant merged
OPF (n = 901 fragments) did not have a homolog in Gen-
Bank and the next most abundant merged OPFs' were
most similar to a conserved hypothetical protein from
Leptospirillum sp. Group II UBA (n = 773, EAY56482) and
a transposase (n = 461, ZP_00669012). The dominant
non-merged OPF did not have a homolog in GenBank (n
= 114 fragments) and the next most abundant OPFs were
most similar to an HNH nuclease (n = 96, ZP_01023224)
and a mutator-type transposase (n = 88, ZP_00669012).
The Chao1 richness estimator predicted that there were a
minimum of 18,463 merged OPFs0.30 in the community
(95% confidence interval [95% CI] = 17,794 to 19,191;
Fig. 2B). Considering the lack of a known function for two
of the most abundant OPFs in the AMD community, this
analysis shows the importance of including such
sequences in metagenomic sequence analyses and may
indicate that subsequent analysis of this group of
sequences would reveal important physiological informa-
tion about the community.

Soil
Tringe et al. [18] used Minnesotan farm soil to build
libraries and sequence 1,633 bacterial 16S rRNA gene frag-
ments and 149,085 random DNA fragments, representing
76 Gbp of DNA. We previously showed that the OTU rich-
ness was approximately 2,000 [39]. The three most abun-
dant OTUs were representatives of the Chloroflexi.

Using MG-DOTUR to analyze the random metagenomic
sequence reads, the 143,422 peptide fragments clustered
into 98,066 merged OPFs. The members of the dominant
merged OPF had similarity to a putative two-component
response regulator (n = 688; NP_254170). The next most
abundant merged OPFs had similarity to a histidine

kinase (n = 566; YP_386369) and a serine/threonine pro-
tein kinase (n = 371; YP_825781). The three most abun-
dant non-merged OPFs in the soil community had
homology to a putative response regulator (n = 29,
NP_520928), a PadR-like transcriptional regulator (n =
21, ZP_00524755), and a Cu2+-transporting ATPase (n =
20, ZP_01060472). Because of the considerable diversity
in the soil sample, an insufficient number of peptide frag-
ments were sampled to obtain a reliable OPF richness esti-
mate; however, using the Chao1 richness estimator we
predicted that the OPF richness was at least 361,546 (95%
CI = 355,613 to 367,615; Fig. 3B). Although considerable
additional sequencing effort is required to obtain a relia-
ble estimate of OPF richness, it is interesting that in spite
of the relatively large OTU and OPFs richness, it was pos-
sible to assign a large number of peptide fragments to the
same OPF.

Whalebone communities
Tringe et al. [18] compared three bacterial communities
growing on the bones of two whales (AHAA and AHAI
were from the same whale) at the bottom of the Pacific
Ocean using 16S rRNA and metagenomic sequence anal-
ysis. Based on 16S rRNA sequence data, the three commu-
nities designated AGZO (n = 73), AHAA (n = 65), and
AHAI (n = 68) had a Chao1-estimated OTU richness of at
least 140 (95% CI = 67 to 366), 48 (95% CI = 29 to 121),
and 19 (95% CI = 17 to 34). The most abundant OTU0.03
from each of the three communities affiliated with mem-
bers of the Arcobacter sp. (n = 15), Bacteroidetes (n = 12),
and Flavobacteriales (n = 19), respectively. We estimated
that each of the three communities shared between 1 and
3 OTUs0.03 with any of the other communities. The lack of
conservation of membership between the three commu-
nities resulted in low Jabund coefficients (0.01 to 0.19), θ
values (0.04 to 0.11), and statistically significant P values
when comparing the communities using AMOVA and ∫-
LIBSHUFF (all p < 0.001). Although the three communi-
ties each came from similar environments, the taxonomic
membership and structure of the three communities were
considerably different.

We applied the newly developed statistical tools to the
metagenomic sequences of the three communities to
assess their genetic and functional similarities. The three
communities, AGZO, AHAA, and AHAI, yielded approxi-
mately 38,000 (25 Mbp), 38,000 (25 Mbp), and 40,000
(25 Mbp) sequence reads and 38,981, 36,165, and 33,199
peptide fragments, which were over 100 aa long, respec-
tively. The dominant merged OPFs in each community
were similar to a histidine kinase (AGZO, n = 386;
YP_341128) and an ABC transporter (AHAA, n = 175 and
AHAI, n = 166; ZP_01203057). The most abundant non-
merged OPF found in each community was homologous
to a conserved hypothetical protein (AGZO: n = 22,
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Collector's curves for the OTU (A) and OPF (B) richness observed and estimated using DNA extracted from an AMD biofilm communityFigure 2
Collector's curves for the OTU (A) and OPF (B) richness observed and estimated using DNA extracted from an AMD biofilm 
community.
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Collector's curves for the OTU (A) and OPF (B) richness observed and estimated using DNA extracted from an agricultural soil in Minnesota, USAFigure 3
Collector's curves for the OTU (A) and OPF (B) richness observed and estimated using DNA extracted from an agricultural 
soil in Minnesota, USA.
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NP_442017), RecR (AHAA: n = 9, ZP_00952890),
another conserved hypothetical protein (AHAI: n = 16,
ZP_00949155), and a putative transposase (AHAI: n = 16,
ZP_00903285). The Chao1 OPF richness estimates for
each of the communities continued to increase with addi-
tional sampling, indicating that the communities had a
minimum OPF richness of 69,541 (95% CI = 67,618 to
71,550), 77,923 (95% CI = 75,699 to 80,276), and
49,120 (95% CI = 47,767 to 50,539) for the AGZO,
AHAA, and AHAI communities, respectively.

Although there was an insufficient number of peptide
fragments to obtain a reliable estimate of the fraction of
OPF membership that was shared between any two of the
three communities, we estimated that they shared at least
between 10 and 20% of their OPF membership (Fig. 4).
The "core" whalebone OPF membership that was shared
among the three whalebone communities had a richness
of at least 3,800 OPFs (approximately 2.5% of the total
richness); 1,678 of these were actually observed in the
sequence collection. The most commonly shared OPFs
among the three communities represented a variety of
activities including metal transport, sensors, and house-
keeping functions (Table 3).

Comparison of the community structures using the pep-
tide fragments using MG-LIBSHUFF (all p < 0.001) and
MG-AMOVA (all p < 0.001) found that the structures of
these three communities were significantly different.
Using OPFs, θ varied between 0.39 and 0.55 indicating
that there was some similarity in community structure.
The ability to quantify and assess the differences in com-
munities without exhaustive sampling of the three whale-
bone communities indicates the importance of applying
statistical methods to metagenomic sequence data. Such
analyses make comparative metagenomics amenable to
ecologically-based hypothesis testing.

Comparison of the three environments
To assess the relative similarity of OTU0.03 membership
between environments, we used DOTUR to cluster the
2,161 16S rRNA gene fragments from the AMD (n = 322),
soil (n = 1,633), and whalebone communities (n = 206).
No OTUs were shared between any two of the three com-
munities; however, additional sampling may have identi-
fied OTUs that were shared between environments.

We compared the relative similarity of OPF membership
between environments by clustering the 351,186-peptide
fragments from the AMD (n = 99,419), soil (n = 143,422),
and whalebone communities (n = 108,345) using MG-
DOTUR and then we estimated the membership and
structure overlap among the three communities (Fig. 5).
Measuring the overlap of OPFs measurement among the
three communities resulted in the estimate that more than

800 OPFs were shared among the five communities; this
represents less than 0.3% of the total OPF richness found
in the five communities. Of this pool, 774 merged OPFs
and were actually observed with functions including
metal transport, housekeeping, and various dehydroge-
nase activities (Table 4). Applications of the statistical
tools to these types of comparisons will enable researchers
to investigate the problem of biogeography using
genome-based methods.

For comparison, we compared the complement of ORFs
from the fully sequenced Bacillus anthracis str. 'Ames
Ancestor' (GenBank accession AE017334), Bacillus cereus
ATCC 10987 (AE017194), Escherichia coli K12 (U00096),
Methanosarcina acetivorans C2A (AE010299), Methanosa-
rcina barkeri str. fusaro (CP000099) genomes. We used
MG-DOTUR to assign ORFs to OPFs and then we used
SONS to compare the OPF0.30 overlap between these
genomes, which we selected for their phylogenetic simi-
larity and breadth. As predicted based on current under-
standing of phylogenetics, the more closely related
organisms had the greatest OPF0.30 overlap. The compari-
son between B. anthracis and B. cereus yielded Jclas and θ
values of 0.70 and 0.74, E. coli and Y. pestis yielded values

Venn diagram comparing the OPF membership found in three whalebone microbial communities (AGZO, n = 38,981 peptide fragments; AHAA, n = 36,165; and AHAI, n = 33,199)Figure 4
Venn diagram comparing the OPF membership found in 
three whalebone microbial communities (AGZO, n = 38,981 
peptide fragments; AHAA, n = 36,165; and AHAI, n = 
33,199). Below each community name is the Chao1 richness 
estimate and the 95% confidence interval for that commu-
nity. We estimated the richness of the overlapping regions 
based on the pairwise SA,B Chao shared richness estimates 
between the three communities and by pooling two commu-
nities and estimating the shared fraction with the third com-
munity. These estimates are provided on the right side of the 
figure.
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of 0.43 and 0.20, and M. acetivorans and M. barkeri yielded
values of 0.54 and 0.43. All of the other pairwise compar-
isons yielded values below 0.08 for both parameters. This
analysis suggests that the comparisons between the
OPFs0.30 identified in the metagenomic sequences repre-
sent the level of differences expected between phylogenet-
ically disparate groups of bacteria. Furthermore, analyses
using completed genome sequences may enable investiga-
tors to define the size and boundaries of so-called "pan-
genomes."

Conclusion
We present a statistical toolbox to estimate the functional
richness and overlap among communities based on pep-
tide fragments deduced from DNA sequence data. These
statistical approaches are necessary, in part, because the
immense genomic diversity contained in most communi-
ties precludes the formation of contigs. There is also con-
siderable question regarding the robustness of sequence
assembly [40]. Although understanding these complex
communities is tantalizing, it may prove useful to identify
more communities similar to the AMD and whalebone
communities that have a relatively low diversity to
develop and test tools that can then be applied to soil. As

Venn diagram comparing the pooled OPF membership found in the AMD (n = 99,419 peptide fragments), soil (n = 143,422), and whalebone (n = 108,345) microbial communi-tiesFigure 5
Venn diagram comparing the pooled OPF membership found 
in the AMD (n = 99,419 peptide fragments), soil (n = 
143,422), and whalebone (n = 108,345) microbial communi-
ties.
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Table 3: Summary of most abundant merged and non-merged OPFs from the three whalebone communities.

Number of ORFs in OPF Putative annotation Representative GenBank Accession

AGZO AHAA AHAI

Merged OPFs

386 32 26 Histidine kinase YP_341128
229 175 166 ABC transporter ZP_01203057
137 21 22 Aerotaxis sensor receptor YP_339458
91 27 33 Sensory box protein YP_341105
75 39 65 ATP-dependent RNA helicase protein NP_518660
74 62 51 Translation elongation factor ZP_01061839
56 85 104 Acyl-CoA dehydrogenase ZP_01106089
52 68 66 Aldehyde dehydrogenase YP_341708
49 65 93 Copper transport membrane protein ZP_01060525
49 53 72 Acetyl-CoA acetyltransferase ZP_01165108
44 45 66 Cation efflux protein YP_678123

Non-merged OPFs

8 5 3 Thioredoxin ZP_01901399
7 3 5 Conserved hypothetical protein ZP_01054178
6 5 3 GTP-binding protein LepA YP_745328
6 3 9 DNA topoisomerase IV, subunit A YP_756797
5 6 3 50S ribosomal protein, L20 ZP_01108363
5 6 3 50S ribosomal protein, L14 ZP_00952078
5 4 7 30S ribosomal protein, S11 ZP_01302802
4 8 5 Recombination protein, RecR ZP_00948629
3 4 6 DNA helicase, RuvB YP_357747
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sequencing technologies improve, the feasibility of
obtaining nearly complete sequence coverage of the more
diverse communities will improve. The rapid advances in
sequencing short DNA fragments (approximately 100 bp
long) in a highly parallelized manner [41] presents many
new opportunities, but the method may not be amenable
to metagenomic sequencing because the short sequence
reads produce peptide fragments less than 100 aa long,
which could make a meaningful ORF identification and
analysis of functional diversity difficult.

Innovative methods have been developed to compare col-
lections of 16S rRNA sequences, and analogous new
methods are needed for comparing metagenomic
sequences. For example, improving our ability to estimate
and interpret the biological meaning of OPF richness will
be helpful for describing the relative functional capacity of
a community. Our analysis does not address the possibil-
ity that distant OPFs might serve the same biological func-
tion and that members of the same OPF might have
different functions. Therefore, further work is needed to
unify studies of functionally active clones into a statistical
framework. For example, comparing the collection of
genes conferring antibiotic resistance found in multiple

environments would enable us to understand better the
diversity of these genes as well as their biogeography.

Our analysis moves beyond previous attempts to compare
microbial communities at the genomic level by not being
dependent upon reference databases and introducing sta-
tistical rigor to the description and comparison of micro-
bial communities. For example, previous analyses formed
clusters based on similarity to reference databases and
excluded those peptide fragments with no significant
matches, which limited the scope of the analysis. Here, we
formed OPFs using the observed data, in essence allowing
the data to "speak for themselves", which allowed for a
comprehensive comparison of the data. Previous analyses
also based the level of similarity between communities on
the observed peptide fragments as though they repre-
sented a statistical population. Here, we treated the data as
a statistical sample and employed statistical tools to esti-
mate the level of similarity between community member-
ship and structure. These tools enable a quantitative,
comprehensive, and statistically robust analysis of micro-
bial communities at the genomic level.

Shotgun sequencing of metagenomic communities is
becoming increasingly popular and routine. The results of

Table 4: Summary of most abundant merged and non-merged OPFs from the AMD, soil, and whalebone communities.

Number of ORFs in OPF Putative annotation Representative GenBank Accession

AMD Soil Whale

Merged OPFs

562 350 451 Acetate CoA ligase ZP_01856978
1628 1515 1240 Diguanylate cyclase signal protein YP_001112705
796 1226 1086 ABC transporter ZP_01060315
371 163 138 Resistance protein ZP_01908921
216 121 152 Dehydrogenase ZP_01454599
238 237 236 Cation transporting ATPase ZP_01060472
237 170 269 Dehydrogenase ZP_01105894
476 282 318 Translocation elongation factor ZP_01594411
123 125 156 DNA helicase ZP_01189997
169 184 289 Acyl CoA dehyodrogenase ZP_01512967

Non-merged OPFs

22 7 5 Urocanate hydratase ZP_01709366
18 5 13 DNA gyrase, A subunit ZP_01052578
17 9 12 Nucleoside-diphosphate kinase ZP_01106957
11 13 14 Nitrogen regulatory protein PII NP_767252
10 10 10 50S ribosomal protein, L19 YP_471434
9 12 9 GTP-binding protein LepA ZP_01650030
7 11 14 50S ribosomal protein, L20 ZP_01108363
8 10 9 Excinuclease ATPase subunit YP_861824
6 10 11 GMP synthase ZP_01753395
5 13 10 30S ribosomal protein, S13 ZP_01885769
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these efforts will provide more insight if they are wrapped
in robust ecological and statistical frameworks. Tools are
needed to advance data analysis beyond the frequency of
different COGs or KEGG categories that are found within
a community. This study is a step in building such a
framework to compare microbial communities function-
ally at the genomic level. In addition to estimating com-
munity relatedness based on metagenomic data, our
approach accounts for present but unsampled peptide
fragments, is independent of a subjective annotation
process, and includes peptide fragments with no known
function.

Methods
Genome sequence data
We obtained the 101,379 sequence reads used to assem-
ble the Bacillus anthracis str. Ames whole genome
sequence from GenBank (NC_003997). Each sequence
read was evaluated by fastgenesb at the Joint Genome
Institute using the same parameters used to predict the
identity of peptide fragments in two previous metagen-
omic sequencing studies [15,18]. We also obtained the
complete complement of 4,514 ORFs from the finished
genome that were longer than 100 aa. All of the predicted
peptide fragments from the published metagenomic
sequencing projects using an acid mine drainage biofilm
[15], whalebone [18], and soil [18] were obtained from
the Joint Genome Institute. Only those ORFs and peptide
fragments longer than 100 aa were considered in our anal-
yses.

Modified toolbox
DOTUR is a freely available computer program that uses a
distance matrix to assign sequences to operational taxo-
nomic units (OTUs) using either the nearest, average, or
furthest neighbor clustering algorithms for all possible
distances and then constructs rarefaction and collector's
curves for a variety of ecological parameters [30]. These
curves can be used to compare the relative richness, the
number of different OTUs in a community, of two sam-
ples and to estimate the overall richness within a sample.
Similarly, MG-DOTUR clusters sequences into OPFs using
a BLAST table as the input. ORFs are assigned to OPFs
using the furthest neighbor clustering algorithm [42],
which requires that all sequences in the OPF have a pair-
wise BSR value greater than a specified value. Because
BSRs are not necessarily symmetric (i.e. BSRij ≠ BSRji), they
were forced to be symmetric by using the smaller of the
two values. Once MG-DOTUR assigns sequences to OPFs,
rarefaction curves of the number of OPFs observed on
average as a function of ORFs sampled and collector's
curves of the Chao1 [43], ACE [44], and the interpolated
Jackknife [45] richness estimates as a function of ORFs
sample are calculated at multiple BSR values predefined
by the user. MG-DOTUR uses a switch to calculate the

ACE estimator. If the coefficient of variation (γ) is greater
than 0.8, then the ACE-1 estimator is calculated, other-
wise the simple ACE estimator is used. This follows rec-
ommendations made by Anne Chao for use of the
program SPADE [46]. This study reports results obtained
by defining an OPF a group of sequences with a BSR value
greater than 0.30 [34,35] and OTU as a group of
sequences that are all more than 97% identical to each
other [30].

∫-LIBSHUFF [31] is a modified version of the program LIB-
SHUFF [32] that makes use of the integral form of the
Cramér-von Mises statistic to determine whether two
communities are either samples of the same statistical
population, sub-samples of each other, or were drawn
from different statistical populations. As employed in ∫-
LIBSHUFF, the Cramér-von Mises statistic is a function of
the coverage of one sequence collection onto itself (i.e.
homologous coverage, CX) compared to its coverage onto
another collection (i.e. heterologous coverage, CXY). Cov-
erage is the fraction of sequences that have another
sequence within a given distance of them. Application of
the LIBSHUFF-style analysis requires converting BSR val-
ues into distances by subtracting the BSR value from one
and setting the limits of integration from zero to 0.70.
MG-LIBSHUFF calculates the ∆CXY statistic and evaluates
its significance using a Monte Carlo testing procedure as
described elsewhere [31,32].

where,

D = the distance (1-BSR) that is used to determine the
level of coverage.

CX(D) and CXY(D) = measures of homologous and heter-
ologous library coverage.

BSRmin = the smallest meaningful BSR value; for this anal-
ysis set at 0.30

Population biologists have developed an analysis of vari-
ance (ANOVA)-style of analysis, which tests whether a col-
lection of communities have similar genetic diversities
using mitochondrial DNA sequences and other genetic
markers. This method has been designated as either the
analysis of molecular variance (AMOVA) [47] or non-par-
ametric multivariate analysis of variance (MANOVA) [48].
This analysis has been applied for comparing bacterial
communities using 16S rRNA sequences [33]. The general
method is based on partitioning the sum of the squared
elements in a distance matrix similar to what is done in an

∆C C D C D dDXY X XY

BSR
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−

∫ ( ) ( )
min

2
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ANOVA. As applied in MG-AMOVA, we implement a sin-
gle-classification ANOVA design to determine whether the
average genetic average genetic difference between the
three whalebone communities was significantly greater
than the difference within a community. The total sum-
squared error (SST) and within community sum-squared
error (SSW) is calculated by

where,

BSRij = the BSR value between the ith and the jth peptide
fragments.

εij = 1 if i and j are in the same community, otherwise it is
0.

N = total number of peptide fragments

The sum-squared error among communities (SSA) can be
calculated as SSA = SST-SSW. Significance was determined
by randomizing the assignment of sequences to the
sequence collections and recalculating the statistic and
determining the proportion of randomizations resulting
in an equal or smaller SSW value than that observed from
the randomized distribution [48].

OPF-based comparisons of community membership and 
structure
Using the frequency that each OPF was observed in mul-
tiple communities, it has been possible to estimate the
number of OPFs that are shared between communities as
well as describe the overlap between community struc-
tures. Analogous to the Chao1 non-parametric richness
estimator [43], Chao et al. [49] derived a non-parametric
estimator of the richness shared between two communi-
ties:

where,

S12 = number of shared OPFs in A and B

f11 = number of shared OPFs with one observed individual
in A and B

f1+, f2+ = number of shared OPFs with one or two individ-
uals observed in A

f+1, f+2 = number of shared OPFs with one or two individ-
uals observed in B

By a similar approach the fraction of individuals or pep-
tide fragments that belong to a shared OPF can be esti-
mated [50,51]:

where,

Uest, Vest = fraction of sequences from A and B that belong
to a shared OTU

Xi, Yi = abundance of the ith shared OTU in A and B

ntotal, mtotal = total number of sequences sampled in A and
B

I(·) = if the argument, ·, is true then I(·) is 1; otherwise it
is 0.

Uest and Vest can then be used to estimate an abundance-
based Jaccard similarity coefficient:

To incorporate into the measure of community similarity
the proportion of peptide fragments in each OPF, Yue and
Clayton [52] developed the parameter θ:

where,

S1 and S2 = observed number of OPFs in each community.

16S rRNA sequence analysis
The three metagenomic sequencing projects were selected
because they were accompanied by parallel 16S rRNA
sequence collections. We obtained the sequences from the
original authors and aligned the sequences using the
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greengenes website [53]. Aligned sequences were
imported to ARB [54] and overlapping sequences were
used to construct distance matrices with a Jukes-Cantor
correction for multiple substitutions. Distance matrices
were analyzed using DOTUR [30], ∫-LIBSHUFF [31], and
MG-AMOVA as described above.

Availability of data and software
MG-DOTUR, MG-LIBSHUFF, MG-AMOVA and all
sequence and analysis files are available from the authors'
website [55].
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