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Abstract. An important problem in metagenomic analysis is to deter-
mine and quantify species (or genomes) in a metagenomic sample. The
identification of phylogenetically related groups of sequence reads in a
metagenomic dataset is often referred to as binning. Similarity-based bin-
ning methods rely on reference databases, and are unable to classify reads
from unknown organisms. Composition-based methods exploit composi-
tional patterns that are preserved in sufficiently long fragments, but are
not suitable for binning very short next-generation sequencing (NGS)
reads. Recently, several new metagenomic binning algorithms that can
deal with NGS reads and do not rely on reference databases have been de-
veloped. However, all of them have difficulty with handling samples con-
taining low-abundance species. We propose a new method to accurately
estimate the abundance levels of species based on a novel probabilistic
model for counting l-mer frequencies in a metagenomic dataset that takes
into account frequencies of erroneous l-mers and repeated l-mers. An ex-
pectation maximization (EM) algorithm is used to learn the parameters
of the model. Our algorithm automatically determines the number of
abundance groups in a dataset and bins the reads into these groups. We
show that our method outperforms the most recent abundance-based
binning method, AbundanceBin, on both simulated and real datasets.
We also show that the improved abundance-based binning method can
be incorporated into a recent tool TOSS, which separates genomes with
similar abundance levels and employs AbundanceBin as a preprocessing
step to handle different abundance levels, to enhance its performance.
We test the improved TOSS on simulated datasets and show that it
significantly outperforms TOSS on datasets containing low-abundance
genomes. Finally, we compare this approach against very recent metage-
nomic binning tools MetaCluster 4.0 and MetaCluster 5.0 on simulated
data and demonstrate that it usually achieves a better sensitivity and
breaks fewer genomes.
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1 Introduction

Metagenomics studies the genomic content of an entire microbial community
by simultaneously sequencing all genomes in an environmental sample. This ap-
proach allows us to study previously uncultured microorganisms that constitute
the vast majority of organisms in most environmental and clinical samples [1].
Metagenomics has already led to a better understanding of microbial communi-
ties in various environments, e.g. acid-mine drainage ponds [2], human gut [3],
soil [4], and marine worms [5]. The recent advent of next-generation sequencing
(NGS) technologies [6,7] has drastically improved sequencing time and cost, lead-
ing to an exponential increase in environmental sequencing data which makes it
possible to study microbial communities at a much higher resolution due to in-
creased sequencing depth [8]. NGS-based approaches have recently been applied
to sequence several metagenomes from cow rumen [9], saliva microbiome [10],
permafrost [11], etc.

In metagenomics, a sample contains sequence reads from various organisms.
Therefore, an important problem in a metagenomic analysis is to determine and
quantify the species (or genomes) in a sample. The identification of phylogenet-
ically related groups of reads in a metagenomic dataset is usually referred to
as binning. A handful of binning algorithms have been developed for metage-
nomic datasets. Similarity-based methods explore the taxonomic composition
of metagenomic sequences by performing similarity search against databases of
known genomes, genes and proteins [12,13,14,15]. These methods have high ac-
curacy and are suitable for very short NGS reads. However, they rely on the
availability of reference databases, while a lot of organisms in a sample may not
be remotely related to any known species. As a consequence, a large fraction of
read data may remain unclassified.

Another group of binning methods is based on compositional properties of the
reads. These methods rely on the property that compositional features, such as
oligonucleotide frequencies and CG content, are preserved across sufficiently long
fragments of a genome. Supervised composition-based algorithms exploit com-
positional properties of the reads for taxonomic classification against models
trained on known sequences [16,17,18]. Unsupervised methods perform cluster-
ing of the reads to detect groups of reads from related organisms [19,20,21,22].
Composition-based methods can accurately bin long fragments. However, due to
local variation of DNA composition across a genome, the performance of these
methods degrades with the decrease of the read length, making them unsuitable
for NGS datasets.

Several recent unsupervised metagenomic binning algorithms have been devel-
oped to handle short NGS reads. In particular, MetaCluster 4.0 [23] exploits com-
positional properties of groups of reads rather than individual reads. Although
it handles high-abundance species well, it does not perform well on datasets
with low-abundance species. MetaCluster 5.0 [24] is a very recent extension of
MetaCluster 4.0 to deal with low-abundant species. Another unsupervised bin-
ning algorithm that handles NGS reads is AbundanceBin [25]. It is designed
to separate reads from genomes with different abundance levels. To predict the
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abundance levels, the frequencies of l-mers are modeled as a mixture of Poisson
distributions. In this model, repeated l-mers and l-mers with errors are ignored,
which may often lead to an inaccurate estimation of the parameters and result
in a low binning accuracy. TOSS [26] is designed to separate reads from genomes
with similar abundance levels. In the first phase, TOSS creates clusters of l-mer
so that all l-mer in each cluster are likely to originate from the same genome.
In the second phase, clusters from the same genome are merged. When genomes
have different abundance levels, TOSS uses AbundanceBin as a preprocessing
step. Clearly, the performance of TOSS is significantly affected by the perfor-
mance of AbundaceBin. Specifically, the inability of AbundaceBin to accurately
infer low-coverage genomes may result in bins with low sensitivity. When these
bins are provided to TOSS as an input, the performance of TOSS would suffer.
To address this problem, we introduce a method to accurately determine the
abundance levels of genomes in a metagenomic dataset.

In this paper, we propose a novel probabilistic model for counting l-mer fre-
quencies in the metagenomic dataset that takes into account the frequencies
of erroneous l-mers as well as repeats. An expectation maximization (EM) algo-
rithm is used to learn the parameters of the model. The algorithm automatically
determines the number of abundance groups in the dataset and bins the reads
into these groups. We show that the method outperforms AbundanceBin on
siumlated and real datasets. We also show that the method can be incorporated
into TOSS to improve its performance in the presence of genomes with different
abundance levels. In fact, our experiments on simulated datasets demonstrate
that this method significantly improves the performance of TOSS. Finally, we
compare the improved TOSS against recent metagenomic binning tools Meta-
Cluster 4.0 and MetaCluster 5.0 on simulated NGS datasets, and show that it
has a comparable performance overall but often achieves a better sensitivity and
breaks fewer genomes.

The paper is organized as follows. In section 2, we describe the probabilistic
model for counting l-mer frequencies in a metagenomic dataset and the algorithm
for learning the parameters of the model and automatically detecting the num-
ber of abundance groups. Section 3 presents the experimental evaluation of our
method and comparison to other recent binning methods. Section 4 concludes
the paper.

2 Methods

In this section, we introduce a novel probabilistic model that can be used for
computing the most probable abundance levels of the genomes in a metagenomic
dataset and estimating the proportions of the reads corresponding to each abun-
dance group. The problem of binning the reads is then reduced to the problem
of determining the parameters of the model and classifying the reads according
to the frequencies of l-mers comprising the reads.
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(a) The coverage of l-mer w = CCTG is x(w) = 4.
However, due to an error in one of the reads that
cover w, w appears in the reads only 3 times, i.e.
y(w) = 3. For the l-mer u = GCTG, x(u) = 3.
Observe that even though there is an error in one
of the reads that cover u, this l-mer also occurs
in a read that covers w due to an error, and thus
y(u) = 3.
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Y
(b) Count Y of an
l-mer depends on the
coverage X and the
number of errors E
within the l-mer. In
turn, the coverage de-
pends on the abun-
dance level G of the
genome and the num-
ber of occurances T
of the l-mer in the
genome.

Fig. 1. Left: Coverage of l-mers and occurrences of l-mers in the reads. Right: The
proposed graphical model.

2.1 Definitions and Notations

Assume that N reads are drawn randomly from a genome of length Lg. Let L
be the length of a read. According to the Lander-Waterman model [27], the left
ends of the reads can be modeled by a Poisson process. Under this model, the
number of reads that cover each substring of length l of the genome follows a
Poisson distribution with the parameter λ = N(L − l + 1)/(Lg − L + 1). From
now on, we will refer to λ as the abundance level of the genome.

Even though most of the l-mers in a bacterial genome occur only once within
the genome [26], some l-mers may occur at multiple locations within the genome.
Assume that w is an l-mer with n copies in the genome. Due to additivity of the
Poisson distribution, the number of reads that cover w, denoted by x(w), has a
Poisson distribution with the parameter nλ. However, due to sequencing errors,
the actual count of the l-mer w in the reads, denoted by y(w), may differ from
x(w) (see Figure 1a). Let xi(w) be the number of reads that cover the l-mer w
with i errors in w. Clearly, x(w) =

∑
i x

i(w) and y(w) = x0(w) + ew, where ew
is the number of times that w occurs in the reads due to errors in other l-mers.

Now, let us consider a metagenomic dataset. Assume that N reads are se-
quenced from S different genomes. The abundance value of genome gj is
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λj = Nj(L− l+1)/(Lgj −L+1), where Nj is the number of reads corresponding
to this genome and Lgj is the length of the genome gj. Let us enumerate all
the substrings of length l in all the reads. Clearly, there are M = N(L− l + 1)
such substrings. Let us consider the ith substring vi, i ∈ [1,M ]. This substring
belongs to the read ri ∈ [1, N ] which was sequenced from the genome gi ∈ [1, S].
Let wi be the original l-mer in the genome gi corresponding to vi. Let us assume
that wi has ti copies in genome gi. Let ei be the number of sequencing errors
(substitutions) within vi. Note that ei equals the Hamming distance between wi

and vi. Also, let xi be the number of reads that cover all the copies of wi in the
genome and yi the number of times that l-mer vi occurs in the reads.

Next, we model the relationship between the abundance values of genomes,
the coverage of l-mers, the number of errors in l-mers, and the counts of l-mers
in the reads.

2.2 A Probabilistic Model for l-mer Frequencies

We define random variables Gi, Xi, Yi, Ti, and Ei that are associated with the
values gi, xi, yi, ti and ei, respectively. The variables Yi are observed by counting
the number of occurrences of l-mers in the reads. The other variables cannot
be observed directly, so they are hidden. Our goal is to determine the most
likely assignment of the l-mers to the genomes. Figure 1b illustrates a graphical
representation of the model.

Let πj be a parameter that represents the proportion of the reads that come
from the jth genome. Let αn

j be the fraction of l-mers that occur n times in

the jth genome. Let αj = (α1
j , ..., α

nmax

j ), where nmax is the maximum possible
number of copies of an l-mer in a genome. For the convenience of notation, we
define parameter vectors θj = (λj , πj , αj) for all j ∈ [1, S], and θ = (θ1, ..., θS).

Assuming that the coverage of an l-mer with t copies in a genome g follows
a Poisson distribution, the probability that the random variable Xi, associated
with the coverage of l-mers in the genome g, takes a particular value c is

P (Xi = c|Gi = g, Ti = t, θ) =
cPois(tλg, c)

∑

j

j Pois(tλg, j)
= Pois(tλg, c− 1),

where Pois(λ, k) is the probability of a Poisson random variable taking the
value k.

The variable Yi associated with the count of the l-mer vi in the reads con-
ditionally depends on variables Xi and Ei. If Ei = e, e > 0, it means that the
corresponding l-mer vi contains e errors. To model the distribution of counts
of l-mers that have e errors, we can borrow the idea from the Balls and Bins
problem (http://www.mathpages.com/home/kmath199.htm).

Assume that n balls are randomly thrown into m bins. It is known that the
expected fraction of bins that get exactly k balls can be approximated by a
Poisson distribution with the parameter n/m. Based on this, the probability
that an erroneous l-mer has frequency k in the reads is

http://www.mathpages.com/home/kmath199.htm
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P (Yi = k|Xi = c, Ei = e, e > 0, θ) =
kcPois(c/nl(e), k)

∑

j

j Pois(c/nl(e), j)
= Pois(c/nl(e), k− 1),

where nl(e) is the number of different possibilities for e errors to occur within
an l-mer.

The distribution of the counts of l-mers without errors can be modeled by the
binomial distribution. The probability that an error-free l-mer has count k in
the reads is

P (Yi = k|Xi = c, Ei = 0) =
kBin(k, c, p0)

∑

j

j Bin(j, c, p0)
=

kBin(k, c, p0)

cp0

where Bin(j, c, p) is the probability that a variable following the binomial distri-
bution takes the value j, and p0 is the probability that an l-mer does not contain
erros.

The above probabilities allow us to compute the probability of a given data
point yi given the values of unobserved variables and the parameter vector θ

P (Yi = yi|Gi = g,Xi = c, Ei = e, Ti = t, θ)

= P (Yi = yi|Xi = c, Ei = e)P (Xi = c|Gi = g, Ti = t, θ)P (Gi = g, Ti = t, θ)P (Ei = e)

= πgα
t
gP (Yi = yi|Xi = c, Ei = e)P (Xi = c|Gi = g, Ti = t, θ)P (Ei = e) (1)

2.3 Parameter Estimation

Now, let us consider the log-likelihood of the observed data Y given the param-
eter vector θ

L(Y |θ) =
∑

i

logP (Yi = yi|θ).

Our goal is to find the maximum likelihood estimate (MLE) of the parameter θ,

θ̂ = argmaxθ L(Y |θ).
To find θ̂, we use the EM algorithm. The E-step requires the computation of
the expected value of the log-likelihood function, with respect to the conditional
distribution of unobservable variables given the data and current parameter es-
timates θ(t):

Q(θ|θ(n)) =
∑

i

∑

g,c,e,t

P (Gi = g,Xi = c, Ti = t, Ei = e|Yi = yi, θ
(t))

·P (Yi = yi, Gi = g,Xi = c, Ti = t, Ei = e|θ)

Here, the posterior probabilities pG,X,E,T |Y,θ(g, c, e, t, k, θ) = P (Gi = g,Xi =
c, Ei = e, Ti = t|Yi = k, θ) of the unobserved data given current parameter
estimates θ(t) can be computed by applying Bayes’ rule to Equation 1.
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In the M-step, we find the parameter θ(t+1) that maximizes Q(θ|θ(n)) with
respect to θ

θ(n+1) = argmax
θ

Q(θ|θ(n)). (2)

The updated parameters are thus

λ
(n+1)
g =

∑

c,e,t,k

pG,X,E,T |Y,θ(g, c, e, t, k, θ)c

∑

c,e,t,k

pG,X,E,T |Y,θ(g, c, e, t, k, θ)t
, αt

g
(n+1)

=

∑

c,e,k

pG,X,E,T |Y,θ(g, c, e, t, k, θ)

∑

c,e,j,k

pG,X,E,T |Y,θ(g, c, e, j, k, θ)

πg
(n+1) =

∑

c,e,k,j

pG,X,E,T |Y,θ(g, c, e, j, k, θ)

∑

i,c,e,j,k

pG,X,E,T |Y,θ(i, c, e, j, k, θ)

Once we estimate the parameters of the probabilistic model, we can assign l-
mers to bins (or genomes) based on the counts of the l-mers in the reads. We
assign an l-mer vi that occurs yi times in the reads to a bin g with probability
P (Gi = g|Yi = yi, θ̂). Then, each read is assigned to a bin according to the
frequencies of its l-mers in the dataset

P (r ∈ gj) =
∏

yi∈r

P (Gi = g|Yi = yi, θ̂)/
∑

g

∏

yi∈r

P (Gi = g|Yi = yi, θ̂).

2.4 Detecting the Number of Bins

The EM algorithm described above assumes that the number of bins (genomes)
S and the maximum multiplicity of the repeats in the genome (the values that
variables Ti may take) are provided. Selecting the best number of clusters is a
challenging problem. Here, we propose an iterative algorithm to find the best
value for S. We start with one bin and iteratively increase the number of bins
until one of the following conditions is reached: (i) one or several bins are split
into overlapping bins, making it impossible to assign the reads to the overlap-
ping bins correctly and (ii) one or several bins are too small to represent a whole
genome. In order to find the maximum multiplicity of the repeats, denoted by R,
we repeat the above procedure for different values of R. For each pair of specific
values S = s and R = r, we record the distance between the observed and the ex-
pected frequencies of l-mers, V (s, r) =

∑
i |M ·P (Y = i|θ̂r,s)−

∑
j=1..M �{i}(yj)|.

Here M · P (Y = i|θ̂r,s) is the expected number of l-mers with counts i, and∑
j=1..M �{i}(yj) is the observed number of l-mers with counts i in the reads.

Finally, we set S and R to the values s and r for which V (s, r) reaches the
minimum. See Algorithm 1 below for the details.

3 Experimental Results

We demonstrate the performance of our abundance-based binning algorithm on
simulated and real datasets and compare the results with AbundanceBin. We also
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Algorithm 1: Deciding the optimal number of bins S and maximum mul-
tiplicity of the repeats R. Given observed l-mer frequencies, the algorithm
attempts to find the best values for S and R.

begin
V ←∞
R,S ← 1, 1
for r = 1, ..., Rmax do

s← 1
θ̂ ← EM(s, r)
if StopCondition(θ̂) then

break

else
if V (s, r) < V then

V ← V (s, r)
R,S ← r, s

s← s+ 1

return R, S

end

show that the algorithm can be incorporated into our recent genome separation
tool TOSS to enhance its performance. We test the improved TOSS on simulated
NGS datasets and compare the results with those of TOSS that uses (or does
not use) AbundanceBin as a preprocessor. Finally, we compare the performance
of the improved TOSS with two very recent binning tools MetaCluster 4.0 and
MetaCluster 5.0 on simulated NGS data.

3.1 Performance on a Simulated Data

Due to our limited knowledge of the nature of microbial communities, simulated
metagenomic datasets are widely used for testing the performance of existing
metagenomic tools. We simulated several metagenomic datasets based on com-
plete genomes from the NCBI database using software MetaSim [28]. Each sim-
ulated dataset contains paired-end reads of length 80 bps. The sequencing error
model was set according to the Illumina error profile with 1% average sequencing
error rate.

We compare the performance of our algorithm against AbundanceBin. In this
test, we are mainly concerned with the ability of both algorithms to separate
reads from genomes with different abundance levels. In order to measure the
performance of the algorithms, we use the evaluation criteria defined in [26]. We
assign a genome to a bin (or cluster) if more than half of the reads from the
genome are assigned to this bin. If there is no bin that contains the majority
of the reads from a genome, we report the genome as broken. We allow several
genomes to be assigned to one bin, and say that the genomes are not separated
if the reads of the genomes ended up in the same cluster. We compute the
separability rate as the percentage of separated pairs of genomes in the dataset.
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Table 1. Comparison with AbundanceBin on simulated datasets. The bold numbers
indicate improved sensitivity and precision. The numbers in parentheses are normalized
sensitivity and precision.

ID
# Cove- Length Ours AbundanceBin

genomes rage Mbp Sens. Prec. Sep. Sens. Prec. Sep.

S1 2
5 2.0

0.80 (0.84) 0.84 (0.84) 1 0.80 (0.75) 0.77 (0.76) 1
10 1.9

S2 3
5 2.7

0.89 (0.89) 0.89 (0.89) 1 0.86 (0.85) 0.86 (0.85) 15 2.6
11 3.0

S3 2
5 0.6

0.79 (0.81) 0.78 (0.80) 1 0.74 (0.69) 0.74 (0.69) 1
9 0.6

S4 2
4 4.4

0.73 (0.82) 0.81 (0.81) 1 - - 0
8 5.2

S5 3
3 5.7

0.87 (0.93) 0.88 (0.93) 1 0.91 (0.89) 0.80 (0.89) 13 4.4
8 6.0

S6 3
3 4.6

0.75 (0.83) 0.83 (0.82) 1 0.81 (0.84) 0.88 (0.84) 0.668 4.1
15 4.7

S7
6

2,2 1.5,1.8
0.86 (0.75) 0.85 (0.84) 1 - - 02,6 2.0,1.7

6,6 1.8,2.0

In addition to standard sensitivity and precision, we also measure normalized
sensitivity and precision. The formal definitions of these concepts can be found
in [26].

The detailed datasets and performance of the two algorithms are summarized
in Table 1. On most of the datasets, the sensitivity and precision of our method
were better than those of AbundanceBin by 4-10%. In tests S4 and S7, Abun-
danceBin failed to separate the two genomes totally. In test S6, AbundanceBin
could identify only 2 bins, while combining the reads from two genomes into one
bin. Our method was more ambitious and separated all three genomes at the cost
of lowered precision and sensitivity. However, when we set the number of bins to
two for the dataset in test S6, our algorithm was able to achieve a high sensitivity
and precision above 95%, compared to 81% and 88% for AbundanceBin.

3.2 Performance on a Real Dataset

We test the performance of our method on a dataset obtained from the acid
mine drainage [2]. This dataset has been well studied and is known to contain
five dominant genomes. The two most abundant species belong to Leptospirillum
group II and Ferroplasma group II. The three species with a lower abundance
levels belong to Leptospirillum group III, Ferroplasma group I and Sulfobacill.
The dataset consists of approximately 120K Sanger reads. Only 56% percent of
the reads can be mapped to the reference sequences of the five dominant genomes.
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We apply both our algorithm and AbundanceBin to the unfiltered dataset. Then
we BLAST the reads of each bin against reference sequences of the five organisms.
We measure the ability of the algorithms to separate reads from the two main
abundance groups. Although both algorithms could correctly identify the two
bins, our algorithm slightly outperforms AbundanceBin in terms of precision and
sensitivity. Our method achieves 82% sensitivity and 81% precision, while the
corresponding values are 78% and 79% for AbundanceBin. Note that due to the
overlap of the bins, it would be very difficult to separate the reads with much
better sensitivity and precision based on l-mer frequencies only.

3.3 Performance of the Improved TOSS

TOSS is designed to handle genomes with similar abundance levels and it re-
quires a preprocessing step to separate the reads from the genomes with differ-
ent abundance levels. We incorporate our abundance-based binning algorithm
into TOSS and test the performance of the improved TOSS on simulated NGS
datasets. We compare the results with the previous version of TOSS that em-
ploys AbundanceBin as a preprocessor and with TOSS without any preprocess-
ing steps. Also, we make a comparison with the most recent metagenomic NGS
binning tools MetaCluster 4.0 and MetaCluster 5.0. Again, to measure the per-
formance of the tools, we use the evaluation criteria defined in [26]. The results of
the comparison are summarized in Table 2. Note that here we only measure the
ability of the algorithms to separate high-abundance genomes (with abundance
levels ≥ 7, as done in [24]). The improved TOSS obviously outperforms both the
version of TOSS that relies on AbundanceBin and the version of TOSS that does
not use any preprocessor (the former has low separability rate while the latter
yields a high number of broken genomes). Compared to the MetaCluster tools,
our algorithm often achieves the highest sensitivity and breaks fewer genomes.

4 Conclusion

Metagenomics approach has opened a door into the previously hidden world
of microorganisms. However, analysis of metagenomic data remains a difficult
problem far from being solved. Binning is an important step of metagenomic
analysis. In this paper, we introduced a novel probabilistic model for counting
l-mer frequencies in a metagenomic dataset. The model allows us to identify
the most probable abundance levels of the genomes in a metagenomic sample
accurately and estimate the proportions of reads from corresponding genomes.
We have shown that our model can serve as a useful preprocessing tool for further
metagenomic analysis.
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