












SUP35 (YDR172W), which codes for a protein involved in trans-

lation termination. We observed nearly equal expression of both

alleles within the coding sequence of the gene, but higher ex-

pression of the BY allele at a SNP in the 39 untranslated region

(UTR) of the gene (Fig. 6B). This observation suggests that the

length of the 39 UTR may vary between alleles, with a shorter 39

UTR associated with the RM allele. Another example of variation in

transcript structure is the gene AFG3 (YER017C), a component of

a mitochondrial inner membrane protease. For AFG3 we observed

equal allelic expression at the 59 end of the gene and strong but

reproducibly biased expression in favor of the RM allele near the 39

end of the gene (Fig. 6C). This pattern is consistent with premature

termination of transcription in the BY background or a shorter 39

UTR associated with the BY allele. We note that because our data

derive from 50- to 76-bp reads (paired-end reads for Illumina GAII

data), observations of ASE at particular SNPs could reflect variation

in transcript structure located some distance from the SNP in

question. The ability to identify these biologically complicated

examples of ASE is an important strength that is unique to the

statistical approach we develop.

Application to measuring ASE
in the human genome

To explore the utility of our method for

characterizing ASE in a more complex

mammalian genome, we obtained RNA-

seq reads from four lanes on the Illumina

GAII generated by Pickrell et al. (2010)

from an individual of African descent, a

member of the Yoruba in Ibadan, Nigeria,

with high-quality phased genotypes

available from the International HapMap

Project (The International HapMap 3

Consortium 2010). This individual is het-

erozygous at about 164,000 annotated

transcribed sites, and we detected reads

with distinguishable alleles mapping to

5780 genes. Pickrell et al. (2010) con-

ducted a targeted test of 244 genes with

significant evidence for local eQTL to

explore whether ASE contributed to ex-

pression variation among 69 individuals.

In contrast, we carried out a genome-

wide survey of ASE in this single individ-

ual (NA18498). By performing our anal-

ysis on a single individual, we avoid the

possible complication of differences in

genetic background confounding the

relative expression levels of two alleles.

This data set has significantly lower

sequencing depth than the yeast data de-

scribed above, with only 2082 genes

containing 10 or more reads that over-

lap a transcribed polymorphism.

We identified 17 genes with evi-

dence for significant ASE (5% FDR) in

individual NA18498. These genes corre-

sponded well to those identified by sum-

ming reads across SNPs and performing

a binomial test. As it is difficult to cali-

brate the FDR for the binomial test, we

chose a P-value threshold of 0.001 (cor-

responding to an expectation of about five expected false posi-

tives), which resulted in a significant test result for 18 genes. Of

these 18 genes, our Bayesian model identified 15 (FDR = 5%). The

genes called as showing significant ASE by the binomial test but

not using our model all had a high skew in allelic expression but

few reads mapping (less than 30), while the two genes called as

significant by our model were marginally significant by the bi-

nomial test (P < 0.05). Although we pinpoint 17 genes as showing

significant ASE, we estimate the fraction of the complete set of

genes tested showing ASE to be ;19% (95% credible interval 11%–

30%) (Fig. 7A). Although it is difficult to obtain a precise figure for

the fraction of genes showing ASE in an individual human due to

differences in study design, power, and statistical methodology,

this range is generally consistent with previous studies of ASE in

humans (Bray et al. 2003; Pastinen et al. 2004; Serre et al. 2008; Ge

et al. 2009).

We also searched for genes showing complicated patterns of

ASE that might inform our understanding of mechanisms of ASE at

these loci. Given the low overall coverage of this data set, we did

not find any convincing examples of variable ASE. However, an

Figure 6. Examples of genes showing variable ASE. Plots are organized and colored identically to Figure
5, B and C. (A) Allele-specific read counts for the gene RPL25. Thin black line represents both intronic and
intergenic sequence. Read counts indicate reproducibly equal expression in exon two of the gene, but
expression biased in favor of the BY allele at four SNPs within the intron, consistent with allele-specific
differences in splicing. (B) Allele-specific read counts for the gene SUP35. Higher expression of the BY allele
at a SNP in the 39 UTR suggests allele-specific variation in UTR length. (C ) Allele-specific read counts for the
gene AFG3. Higher expression of the RM allele near the 39 end of the gene is consistent with allele-specific
variation in transcript structure that could occur some distance away from the SNP tagging the ASE.
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examination of read counts at multiple SNPs within a gene can still

be informative about potential mechanisms of ASE. For example,

Figure 7B shows the gene DFNA5 (ENSG00000105928), which has

three transcript isoforms and is implicated in nonsyndromic

hearing impairment in humans (van Camp et al. 1995). Although

read counts at SNPs within this gene are quite low, this gene was

called as showing significant ASE (FDR = 5%). As is apparent from

Figure 7B, the proportion of reads from allele one is consistently

high across all SNPs in the gene, with the exception of two points

with relatively few reads (green point just below 0.5 represents

a total of only nine reads). Such read counts would be most con-

sistent with a variant in the promoter affecting transcription ini-

tiation or a variant in the 39 UTR affecting decay rates that acts

uniformly across the transcript, rather than allele-specific variation

in transcript structure. In the future, advances in sequencing

technology and RNA-seq read-mapping software are likely to lead

to data sets with deeper coverage and more accurate reconstruction

of transcript structure, which will allow a more complete picture of

the landscape of ASE in humans.

Discussion
We describe a novel method for gaining insight on the genome-

wide characteristics of cis-regulatory variation and discovering loci

with complex patterns of ASE. We demonstrate that inferences of

ASE made using different sequencing platforms are highly con-

cordant, and identify about 2000 genes showing ASE (FDR = 5%)

between two diverse yeast strains. Our model provides a framework

for analyzing allele-specific read count data obtained at multiple

SNPs within genes over multiple experimental replicates in a sta-

tistically rigorous manner. Combining information from SNPs

across the length of a transcript and allowing for technical varia-

tion in read counts are key advantages that allow our model to

outperform the binomial test. In addition, we demonstrate that

explicitly allowing levels of ASE to vary across SNPs within genes

can lead to the identification of genes showing biologically in-

teresting patterns of ASE that may have remained invisible by other

analysis methodologies (Fig. 6). Modeling complicated mechanisms

of ASE is likely to be even more critical as we move toward studying

ASE in deeply sequenced mammalian transcriptomes, where phe-

nomena such as alternative splicing are pervasive.

A unique strength of our approach is its ability to simulta-

neously make use of all of the sequence data to infer global pa-

rameters of interest. Of the genes that have transcribed polymor-

phisms, we estimate that nearly 80% exhibit ASE. This estimate is

higher than a previous estimate for the same two yeast strains

(;20%) based on verification of cis-acting regulatory variation by

allele-specific quantitative PCR for genes with local eQTL (Ronald

et al. 2005a). However, several details of differences in study design

and methodology can account for this discrepancy. First, only

genes with a transcribed polymorphism can be assessed for ASE

with RNA-seq, while the estimate of Ronald et al. (2005a) relied on

eQTL that were detected without this requirement. Ronald et al.

(2005a) showed that there is a higher rate of local regulatory var-

iation (most of which acts in cis to produce ASE) in more poly-

morphic regions of the yeast genome. Thus, our estimate is likely

higher in part due to measurements made on genes found in re-

gions of the yeast genome ascertained to have a high occurrence of

cis-acting regulatory variants. Second, microarray measurements

of gene expression levels may miss some of the transcript variants

that we detect and classify as variable ASE if probes are designed to

regions of the gene with equal allelic expression. Finally, we note

that RNA-seq affords the opportunity to measure transcript levels

with very high precision (Wang et al. 2009). Given the large

number of polymorphic noncoding sites found between BY and

RM (more than 30,000), it may be that nearly every gene in the

genome shows some level of ASE when measured with sufficient

precision, which raises a fundamental question: What level of ASE

is biologically significant? In the future, it will be critical to move

beyond describing and cataloging variation in transcript levels

toward a more complete understanding of the functional relevance

of expression variation.

Finally, although we applied our statistical methodology to

study ASE, our framework is general and can be used to characterize

allelic differences of any functional genomics phenotypes derived

from sequence data, such as methylation (Shoemaker et al.

2010) or protein–DNA interactions (Hesselberth et al. 2009). As

new applications of high-throughput sequencing are conceived

(Morozova et al. 2009), it will become increasingly important to

develop statistical methods tailored to these large and formidably

complex data sets in order to maximize the biological insights

derived from such experiments.

Methods

Experimental design
We mated strains BY4716 and RM11-1a and used auxotrophic
deletions to select for the diploid hybrid during mating. These
strains have been described in detail elsewhere (Brem et al. 2002).

Figure 7. ASE in the human genome. (A) Plot of the false-discovery rate as a function of the number of genes called significant. Since the human RNA-
seq data set is low coverage for most genes, it is not possible to identify many genes showing significant ASE without risking a relatively large proportion of
false discoveries. (B) Human gene DFNA5, which shows significant ASE in individual NA18498. Plot is organized identically to Figure 5, B and C, with
different colored dots representing measurements obtained from separate Illumina sequencing lanes. Although the number of reads is low for any given
dot, the proportion of reads from allele one is consistently higher than that for allele two.
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We grew the strains to mid-log phase (OD600, 0.8–1.0) in rich
media (YPD). We extracted RNA by the acid phenol method
(Schmitt et al. 1990) and confirmed RNA integrity using an Agilent
2100 Bioanalyzer (Agilent Technologies). We extracted genomic
DNA using a modified version of the yeast smash and grab protocol
(Hoffman and Winston 1987).

We provide a brief overview of sequencing library preparation
here and give full details with kit numbers in the Supplemental
Materials. We prepared genomic DNA libraries according to the
manufacturer-recommended protocols. For all RNA samples, we
performed poly(A) enrichment and one round of ribosomal RNA
depletion. For RNA samples submitted to the Illumina GA, we
fragmented RNA to 60–200 bp, made cDNA by random priming,
and followed the manufacturer-recommended protocols for the
remainder of sequencing library preparation. For RNA samples
submitted to the SOLiD System, we prepared libraries according to
the manufacturer-recommended protocols. All SOLiD samples
were tagged with four barcodes per library.

Yeast allele-specific read mapping

We obtained complete genome sequences for BY from the Sac-
charomyces Genome Database (June 2008 sequence; http://
www.yeastgenome.org/) and for RM from the Broad Institute
(http://www.broadinstitute.org/). After repeat masking (Smit et al.
2010) the sequences, we used LASTZ (http://www.bx.psu.edu/
miller_lab) to infer alignment scoring parameters appropriate for
aligning the BY and RM genomes and to generate pairwise align-
ments between all chromosomes of the two strains. We then used
TBA (Blanchette et al. 2004) to compute a whole-genome align-
ment that is not biased in favor of any particular reference genome.
We masked any nucleotides that were ambiguous in either ge-
nome, projected this alignment to both BY and RM genomic co-
ordinates to construct reference genomes for the strains, and
mapped all reads to both genomes. To align reads in colorspace or
nucleotide space, we used the program BFAST (Homer et al. 2009;
Supplemental Methods).

Next, we examined the alignment of each read to the BY ge-
nome and to the RM genome in order to search for reads with
a distinguishable allelic origin. We analyzed only the highest-
scoring alignment of each read to each genome. We required reads
to map to approximately the same genomic location in BYand RM;
specifically, we required each read to map within the same align-
ment block in each strain. We used a simple probabilistically mo-
tivated, base quality–aware scoring scheme implemented in the
program cross_match (http://phrap.org/phredphrapconsed.html)
to score the alignment of the read to the genome of each strain
(Supplemental Methods), and considered a read to be a candidate
BY read if the score was higher for the alignment to the BY genome
and vice versa. Any read with an alignment to one genome that
scores higher must overlap a SNP, indel, or chromosomal break-
point between the strains. At a small proportion of SNPs, read
mapping is strongly biased toward one of the two alleles, as has
been noted previously in humans (Degner et al. 2009). To over-
come this potential source of bias, we simulated 50-bp reads with
sequencing errors overlapping every SNP and indel ascertained
from our whole-genome multiple alignment of BY and RM, and
mapped the simulated reads using the same pipeline described
above (Supplemental Methods). For our experimentally acquired
data, we then filtered out all allelically mapped reads that over-
lapped a SNP showing a deviation >5% from equal mapping of
alleles in our simulated reads. To assign reads to genes, we used
gene annotations from the Saccaromyces Genome Database, along
with 59 and 39 UTRs predicted by RNA-seq (Nagalakshmi et al.
2008). We ignored SNPs or indels that occurred within more than

one overlapping genomic feature. For reads that overlapped mul-
tiple SNPs, we randomly assigned the read count to one of the
SNPs. It has been noted by other investigators that base composi-
tion has a significant effect on the propensity of a molecule to be
sequenced using high-throughput sequencing technologies
(Dohm et al. 2008; Bullard et al. 2010; Pickrell et al. 2010). This
phenomenon could affect our results only when the BY and RM
alleles at a particular locus differ greatly in base composition (which
is rare), since our analysis only compares relative allelic expres-
sion. Nevertheless, we performed a correction for GC content by
(1) calculating expected sequencing depth for windows of a given
GC content using our genomic DNA data and (2) adjusting relative
RNA read counts based on the difference in predicted read depth
between fragments of BY or RM allelic GC content (Supplemental
Methods).

Finally, we removed any reads marked as potential PCR du-
plicates to ensure that differential allelic expression was not due to
differential allelic amplification. For our Illumina single-end and
paired-end data, we used Picard’s MarkDuplicates command-line
tool (http://picard.sourceforge.net/). For our ABI SOLiD data, we
took advantage of the four molecular barcodes tagging each se-
quencing library. Since the barcodes are embedded in bridge
primers used for PCR amplification, reads possessing different
barcodes must originate from distinct molecules. As such, for each
genomic position, we kept a maximum of one read per barcode and
marked the remaining reads as PCR duplicates.

Human allele-specific read mapping

We obtained four lanes of RNA-seq data (two 35-bp and two 46-bp
single-end data sets) generated by Pickrell et al. (2010) for in-
dividual NA18498. This individual had the most RNA-seq reads of
any sample sequenced by Pickrell et al. (2010). We obtained phased
genotype information from the International HapMap Project
(The International HapMap 3 Consortium 2010). We mapped
reads to the reference human genome (hg18/build 36) using the
program GSNAP version 2011-03-11 (Wu and Nacu 2010), which
features SNP-tolerant alignment. We also took advantage of
GSNAP’s ability to detect splicing events using a database of
known splice junctions compiled using Ensembl gene annota-
tions (Hubbard et al. 2002). We ran GSNAP with the options --use-
snps, --splicesites, --max-mismatches=0.05, --npaths=1, --trim-
mismatch-score=0, and --quiet-if-excessive to obtain unique
alignments of each read. To ensure that GSNAP’s SNP-tolerant
alignment feature eliminated the mapping bias in favor of the
reference allele (Degner et al. 2009), we simulated reads (35 and 46
bp in length, the lengths of the actual reads) of both alleles at every
position overlapping the SNP. We mapped these reads to the hu-
man genome using the same commands used to map the real data.
We found that mapping bias was completely eliminated for all but
a small number of SNPs (about 2600 SNPs, or about 1.5% of all
SNPs), which we removed from further consideration.

In order to obtain allele-specific read counts, we group SNPs
by Ensembl-annotated gene and examined any genic SNPs over-
lapping a mapped read. We assigned reads as originating from
haplotypes A or B (as defined by the phased HapMap data; labels
are arbitrary for our purposes). For reads overlapping multiple
SNPs, we randomly chose a single SNP and incremented the read
count for that SNP. This procedure results in allele-specific read
counts for SNPs within each gene that are stratified as originat-
ing from either haplotype A or B, which served as input to our
Bayesian model. As the RNA-seq data from Pickrell et al. (2010)
were not accompanied by genomic DNA sequence data, we used
the same estimates of the dispersion in read counts as our full
analysis of the yeast data (i.e., the analysis of Illumina and ABI
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data using estimates derived from yeast genomic DNA sequenc-
ing data).

Statistical analysis

We used the R statistical environment for all statistical analyses
(R Development Core Team 2010). For our initial analysis of allelic
count data using the binomial exact test, we used the binom.test
function. We provide a brief summary of our Bayesian hierarchical
model here and provide a detailed description in the Supplemental
Methods. We construct a three-stage hierarchical model for allelic
read counts. We denote the count of reads mapping to RM at SNP
j in gene i and replicate r as Yijr, and in the first-stage model, these
counts are binomially distributed with parameters Nijr (coverage
at the SNP) and pij. At the second stage, the pij arises from a gene-
specific beta distribution with parameters ai and bi. The second
stage allows for the possibility that pi may not be constant across all
SNPs within gene i. These steps can be collapsed to give a beta-
binomial model. We reparameterize the beta distribution as pi = ai/
(ai + bi) and ei = 1/(1 + ai + bi), which have straightforward in-
terpretations as the mean amount of ASE (pi) and the dispersion
around the mean (ei) for gene i. As the dispersion ei approaches
zero, the counts converge to binomially distributed. Finally, we
place a two-component mixture prior on pi, ei

pi; ei âj ; d̂; f ; g;h;p0 ;
Beta â; âð Þ 3 Beta l; d̂

� �
with probability p0:

Beta f ; gð Þ 3 Beta l;hð Þ with probability 1� p0:

(

The parameters â and d̂ are estimated from genomic DNA data
and provide a measure of the ‘‘noise’’ in read counts due to tech-
nical variability. We estimated these parameters separately using
genomic DNA data from each technology platform and found that
the estimates were similar (95% credible intervals overlapped), so
in our analysis of data from both platforms, we used the median of
all posterior samples as our estimate for these parameters: â » 3600
and d̂ » 550: We implement this model using MCMC, running
multiple Markov chain simulations for at least 500,000 iterations
and examining time series plots of model parameters to verify con-
vergence. For any list of i = 1, . . ., n genes (out of m total genes) and s =

1, . . ., s draws from the posterior distribution of each parameter ob-
tained via MCMC, if we let u = ðf ; g;h;p0; â; d̂Þ, we can calculate the
FDR achieved when calling those genes significant using the formula
FDR = +n

i=11� p C2 yjð Þ; with Pr C2 yjð Þ= 1
s +S

s=1pðC2jp sð Þ
i ; e

sð Þ
i ; u

sð Þ
i Þ: In

this formula, C2 signifies component 2 of the two-component
mixture prior described above and is calculated using Bayes’ formula
as detailed in the Supplemental Methods. R code to implement
the statistical model we describe is available in the Supplemental
Material and from the website http://akeylab.gs.washington.edu/
downloads.shtml.

Data access
Raw data are accessible at the NCBI Sequence Read Archive (http://
trace.ncbi.nlm.nih.gov/Traces/sra/sra.cgi) under accession num-
ber SRP007477.
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