
A survey of sequence alignment
algorithms for next-generation
sequencing
Heng Li and Nils Homer
Submitted: 3rd March 2010; Received (in revised form): 14th April 2010

Abstract
Rapidly evolving sequencing technologies produce data on an unparalleled scale. A central challenge to the analysis
of this data is sequence alignment, whereby sequence reads must be compared to a reference. A wide variety
of alignment algorithms and software have been subsequently developed over the past two years. In this article,
we will systematically review the current development of these algorithms and introduce their practical applications
on different types of experimental data. We come to the conclusion that short-read alignment is no longer the
bottleneck of data analyses.We also consider future development of alignment algorithms with respect to emerging
long sequence reads and the prospect of cloud computing.

Keywords: new sequencing technologies; alignment algorithm; sequence analysis

INTRODUCTION
The rapid development of new sequencing technol-

ogies substantially extends the scale and resolution

of many biological applications, including the scan

of genome-wide variation [1], identification of pro-

tein binding sites (ChIP-seq), quantitative analysis

of transcriptome (RNA-seq) [2], the study of the

genome-wide methylation pattern [3] and the as-

sembly of new genomes or transcriptomes [4].

Most of these applications take alignment or de

novo assembly as the first step; even in de novo as-

sembly, sequence reads may still need to be aligned

back to the assembly as most large-scale short-read

assemblers [5, 6] do not track the location of each

individual read. Sequence alignment is therefore es-

sential to nearly all the applications of new sequen-

cing technologies.

All new sequencing technologies in production,

including Roche/454, Illumina, SOLiD and Helicos,

are able to produce data of the order of giga

base-pairs (Gbp) per machine day [7]. With the

emergence of such data, researchers have quickly

realized that even the best tools for aligning capillary

reads [8, 9] are not efficient enough given the unpre-

cedented amount of data. To keep pace with the

throughput of sequencing technologies, many new

alignment tools have been developed in the last two

years. These tools exploit the many advantages spe-

cific to each new sequencing technology, such as the

short sequence length of Illumina, SOLiD and

Helicos reads, the di-base encoding of SOLiD

reads, the high base quality towards the 50-end of

Illumina and 454 reads, the low indel error rate

of Illumina reads and the low substitution error

rate of Helicos reads. Short read aligners outperform

traditional aligners in terms of both speed and accur-

acy. They greatly boost the applications of new

sequencing technologies as well as the theoretical

studies of alignment algorithms.

This article aims to systematically review the

recent advance with respect to alignment algorithms.

It is organized as follows. We first review the

HengLi is a postdoctoral researcher at the Broad Institute and used to work at the Sanger Institute where he developed several popular

alignment algorithms.

NilsHomer is a PhD student in Computer Science and Human Genetics departments of UCLA. He developed the BFAST alignment

algorithm.

Corresponding author. Heng Li, Broad Institute, 5 Cambridge Center, Cambridge, MA 02142, USA. Tel: 617 714 7000;

Fax: 617 714 8102; E-mail: hengli@broadinstitute.org

BRIEFINGS IN BIOINFORMATICS. VOL 11. NO 5. 473^483 doi:10.1093/bib/bbq015
Advance Access published on 11 May 2010

� The Author 2010. Published by Oxford University Press. For Permissions, please email: journals.permissions@oxfordjournals.org

 at M
ichigan State U

niversity on O
ctober 27, 2011

http://bib.oxfordjournals.org/
D

ow
nloaded from

http://bib.oxfordjournals.org/

progress on general alignment techniques and then

examine their applications in the context of specific

sequencing platforms and experimental designs.

We will use simulated data to evaluate the necessity

of gapped alignment and paired-end mapping, and

present a list of alignment software that are actively

maintained and widely used. Finally, we will discuss

the future development of alignment algorithms.

OVERVIEWOFALIGNMENT
ALGORITHMS
Most of fast alignment algorithms construct auxiliary

data structures, called indices, for the read sequences

or the reference sequence, or sometimes both.

Depending on the property of the index, alignment

algorithms can be largely grouped into three cate-

gories: algorithms based on hash tables, algorithms

based on suffix trees and algorithms based on

merge sorting. The third category only consists

of Slider [10] and its descendant SliderII [11].

This review will therefore focus on the first two

categories.

Algorithms based on hash tables
The idea of hash table indexing can be tracked back

to BLAST [12, 13]. All hash table based algorithms

essentially follow the same seed-and-extend para-

digm. BLAST keeps the position of each k-mer

(k¼ 11 by default) subsequence of the query in a

hash table with the k-mer sequence being the key,

and scans the database sequences for k-mer exact

matches, called seeds, by looking up the hash table.

BLAST extends and joins the seeds first without gaps

and then refines them by a Smith–Waterman align-

ment [14, 15]. It outputs statistically significant local

alignments as the final results.

The basic BLAST algorithm has been improved

and adapted to alignments of different types.

Nevertheless, the techniques discussed below focus

on mapping a set of short query sequences against a

long reference genome of the same species.

Improvement on seeding: spaced seed
BLAST seeds alignment with 11 consecutive

matches by default. Ma et al. [16] discovered that

seeding with non-consecutive matches improves

sensitivity. For example, a template ‘1110100101

00110111’ requiring 11 matches at the ‘1’ positions

is 55% more sensitive than BLAST’s default template

‘11111111111’ for two sequences of 70% similarity.

A seed allowing internal mismatches is called spaced

seed; the number of matches in the seed is its weight.

Eland (A.J. Cox, unpublished results) was the first

program that utilized spaced seed in short-read align-

ment. It uses six seed templates spanning the entire

short read such that a two-mismatch hit is guaranteed

to be identified by at least one of the templates, no

matter where the two mismatches occur. SOAP [17]

adopts almost the same strategy except that it indexes

the genome rather than reads. SeqMap [18] and

MAQ [19] extends the method to allow k-mis-

matches, but to be fully sensitive to k-mismatch

hits, they require ð2kk Þ templates, which is exponential

in k and thus inefficient given large k. To improve

the speed, MAQ only guarantees to find

two-mismatch hit in the first 28 bp of each read,

the most reliable part of an Illumina read. It extends

the partial match when a seed match is found.

RMAP [20, 21], which is based on the Baeza–

Yates–Perleberg algorithm [22], applies a different set

of seed templates. It effectively uses kþ 1 templates

to find k-mismatch hits. RMAP reduces the number

of templates, but for large k, the weight of each

template is small. Such a strategy cannot fully take

the advantage of hash table indexing in this case as

many candidates will be returned.

An improvement is achieved by Lin et al. [23]

who present the optimal the way to design a min-

imum number of spaced seeds, given a specified read

length, sensitivity requirement and memory usage.

For example, their program ZOOM is able to iden-

tify all two-mismatch hits for 32 bp reads using five

seed templates of weight 14. In comparison, RMAP

uses three templates of weight 10; Eland uses six

templates of weight 16 but with only 12.5 bases

indexed in the hash table to reduce memory require-

ment. As the time complexity of spaced seed algo-

rithm is approximately proportional to where q is the

weight, m the number of templates, n the number of

reads and L the genome size, ZOOM has better the-

oretical time complexity given limited memory.

The memory required by hashing genome is usu-

ally bytes where s is the sampling frequency [24]. It is

memory demanding to hold in RAM a hash table

with q larger than 15. Homer et al. [25] proposed a

two-level indexing scheme for any large q. They

build a hash table for j-long (j< q, typically 14)

bases. To find a q-long key, they look up the hash

table from the first j bases and then perform a binary

search among elements stored in the resulting

bucket. Looking up a q-long key takes time, only

474 Li and Homer
 at M

ichigan State U
niversity on O

ctober 27, 2011
http://bib.oxfordjournals.org/

D
ow

nloaded from

http://bib.oxfordjournals.org/

slightly worse than the optimal speed O(1). The peak

memory becomes independent of q. A similar idea is

also used by Eland and MAQ, but they index reads

instead of the genome.

Many other aligners [26–28] also use spaced seed

with different templates designed specifically for the

reference genome and sensitivity tolerances, making

spaced seed the most popular approach for short-read

alignment.

Improvement on seeding: q-gram filter and
multiple seed hits
A potential problem with consecutive seed and

spaced seed is they disallow gaps within the seed.

Gaps are usually found afterwards in the extension

step by dynamic programming, or by attempting

small gaps at each read positions [17, 18]. The

q-gram filter, as is implemented in SHRiMP [29]

and RazerS [30], provides a possible solution

to building an index natively allowing gaps. The

q-gram filter is based on the observation that at the

occurrence of a w-long query string with at most k
differences (mismatches and gaps), the query and the

w-long database substring share at least (wþ 1)�

(kþ 1)q common substrings of length q [31–33].

Methods based on spaced seeds and the q-gram

filter are similar in that they both rely on fast

lookup in a hash table. They are mainly different

in that the former category initiates seed extension

from one long seed match, while the latter initiates

extension usually with multiple relatively short seed

matches. In fact, the idea of requiring multiple seed

matches is more frequently seen in capillary read

aligners such as SSAHA2 and BLAT; it is a major

technique to accelerate long-read alignment.

Improvements on seed extension
Due to the use of long spaced seeds, many aligners

do not need to perform seed extension or only

extend a seed match without gaps, which is much

faster than applying a full dynamic programming.

Nonetheless, several improvements over BLAST

have been made regarding on seed extension. A

major improvement comes from the recent advance

in accelerating the standard Smith–Waterman with

vectorization. The basic idea is to parallelize align-

ment with the CPU SIMD instructions such that

multiple parts of a query sequence can be processed

in one CPU cycle. Using the SSE2 CPU instructions

implemented in most latest x86 CPUs, [34] derived a

revised Smith–Waterman algorithm that is over

10 times faster than the standard algorithm.

Novoalign (http://novocraft.com), CLC Genomics

Workbench (http://clcbio.com/index.php?

id¼ 1240) and SHRiMP are known to make use

of vectorization.

Another improvement is achieved by constraining

dynamic programming around seeds already found in

the seeding step [25, 35, 36]. Thus unnecessary visits

to cells far away from seed hits in iteration are greatly

reduced. In addition, Myers [37] found that a query

can be aligned in full length to an L-long target

sequence with up to k mismatches and gaps in

O(kL) time, independent of the length of the

query. These techniques also help to accelerate

the alignment when dynamic programming is the

bottleneck.

Algorithms based on suffix/prefix
tries
All algorithms in this category essentially reduce the

inexact matching problem to the exact matching

problem and implicitly involve two steps: identifying

exact matches and building inexact alignments sup-

ported by exact matches. To find exact matches,

these algorithms rely on a certain representation of

suffix/prefix trie, such as suffix tree, enhanced suffix

array [38] and FM-index [39]. The advantage of

using a trie is that alignment to multiple identical

copies of a substring in the reference is only

needed to be done once because these identical

copies collapse on a single path in the trie, whereas

with a typical hash table index, an alignment must be

performed for each copy.

It should be noted that the choice of these data

structures is independent of methods for finding in-

exact matches. An algorithm built upon FM-index,

Table 1: Popular short-read alignment software

Program Algorithm SOLiD Longa Gapped PEb Qc

Bfast hashing ref. Yes No Yes Yes No
Bowtie FM-index Yes No No Yes Yes
BWA FM-index Yesd Yese Yes Yes No
MAQ hashing reads Yes No Yesf Yes Yes
Mosaik hashing ref. Yes Yes Yes Yes No
Novoaligng hashing ref. No No Yes Yes Yes

aWork well for Sanger and 454 reads, allowing gaps and clipping.
bPaired end mapping. cMake use of base quality in alignment. dBWA
trims the primer base and the first color for a color read. eLong-read
alignment implemented in the BWA-SW module. fMAQ only does
gapped alignment for Illumina paired-end reads. gFree executable for
non-profit projects only.

Sequence alignment algorithms for next-generation sequencing 475
 at M

ichigan State U
niversity on O

ctober 27, 2011
http://bib.oxfordjournals.org/

D
ow

nloaded from

http://novocraft.com
http://clcbio.com/index.php?
http://bib.oxfordjournals.org/

for example, would also work with suffix tree index

in principle.

Trie, prefix/suffix tree and FM-index
A suffix trie, or simply a trie, is a data structure that

stores all the suffixes of a string, enabling fast string

matching. To establish the link between a trie and an

FM-index, a data structure based on Burrows-

Wheeler Transform (BWT) [40], we focus on

prefix trie which is the trie of the reverse string.

All algorithms on a trie can be seamlessly applied

to the corresponding prefix trie.

Figure 1A gives the prefix trie of AGGAGC.

Finding all exact matches of a query sequence is

equivalent to searching for a path descending from

the root where each edge label on the path matches a

query letter in the reverse order. If such a path exists,

the query is a substring. Given a query AGC, for

example, the path matching the query is [0, 6]!

[3, 3]![5, 5]![1, 1].

The time complexity of determining if a query

has an exact match against a trie is linear in the length

of the query, independent of the length of the

reference sequence. However, a trie takes OðL2Þ

space where L is the length of the reference. It is

impractical to build a trie even for a bacterial

genome. Several data structures are proposed to

reduce the space. Among these data structures, a

suffix tree (Figure 1C) is most widely used. It

achieves linear space while allowing linear-time

searching. Although it is possible in theory to repre-

sent a suffix tree in Llog2L þOðLÞ bits using

rank-selection operations [41], even the most space

efficient implementation of bioinformatics tools re-

quires 12–17 bytes per nucleotide [42], making it

impractical to hold the suffix tree of the human

genome in memory.

To solve this problem, Abouelhoda et al. [38]

derived an enhanced suffix array that consists of a

suffix array and several auxiliary arrays, taking

6.25 bytes per nucleotide. It can be regarded as an

implicit representation of suffix tree, and has an iden-

tical time complexity to suffix tree in finding exact

matches, better than the suffix array originally in-

vented by Manber and Myers [43].

A further improvement on memory is achieved

by Ferragina and Manzini [39] who proposed the

A B

D E

C

Figure 1: Data structures based on a prefix trie. (A) Prefix trie of string AGGAGC where symbol Œ marks the
start of the string. The two numbers in each node give the suffix array interval of the substring represented by
the node, which is the string concatenation of edge symbols from the node to the root. (B) Compressed prefix
trie by contracting nodes with in- and out-degree both being one. (C) Prefix tree by representing the substring on
each edge as the interval on the original string. (D) Prefix directed word graph (prefix DAWG) created by collapsing
nodes of the prefix trie with identical suffix array interval. (E) Constructing the suffix array and Burrows^
Wheeler transform of AGGAGC. The dollar symbol marks the end of the string and is lexicographically smaller
than all the other symbols. The suffix array interval of a substring W is the maximal interval in the suffix array
with all suffixes in the interval having W as prefix. For example, the suffix array interval of AG is [1, 2].The two suf-
fixes in the interval are AGC$ and AGGAGC$, starting at position 3 and 0, respectively. They are the only suffixes
that have AG as prefix.

476 Li and Homer
 at M

ichigan State U
niversity on O

ctober 27, 2011
http://bib.oxfordjournals.org/

D
ow

nloaded from

http://bib.oxfordjournals.org/

FM-index and found that locating a child of a parent

node in the prefix trie can be done in constant time

using a backwards search on this data structure. Thus

the time complexity of finding exact matches with

an FM-index is identical to that with a trie. With

respect to memory, the FM-index was originally de-

signed as a compressed data structure such that the

theoretical index size can be smaller than the original

string if the string contains repeats (equivalently, has

small entropy). The FM-index is usually not com-

pressed for better performance during alignment

since DNA sequences have a small alphabet. The

practical memory footprint of an FM-index is typic-

ally 0.5–2 bytes per nucleotide, depending on im-

plementations and the parameters in use. The index

of the entire human genome only takes 2–8 GB of

memory.

It is worth noting that we only focus on the data

structures having been used for DNA sequence

alignment. There is a large volume of literature in

computer science on general theory of string match-

ing, especially on short string matching. Readers are

referred to ref. [44] for a more comprehensive

review in a wider scope. Nevertheless, traditional

string matching algorithms strive for completeness,

while many current aligners sacrifice absolute com-

pleteness for speed.

Finding inexact matches with a suffix/prefix trie
Of published aligners that can be used for query-

reference alignment, MUMmer [42] and OASIS

[45] are based on suffix tree, Vmatch [38] and

Segemehl [46] on enhanced suffix array, and

Bowtie [47], BWA [48], SOAP2 [49], BWT-SW

[50] and BWA-SW [51] on FM-index. As explained

above, a program built upon one representation of

suffix/prefix trie can be easily migrated to another.

The FM-index is most widely used mainly due to its

small memory footprint.

As to the algorithms for inexact matching,

MUMmer and Vmatch anchor the alignment with

maximal unique matches (MUMs), maximal

matches, maximal repeats or exact matches, and

then join these exact matches with gapped align-

ment. Similarly, Segemehl initiates the alignment

with the longest prefix match of each suffix, but it

may also enumerate mismatches and gaps at certain

positions of the query to reduce false alignments.

OASIS and BWT-SW essentially sample sub-

strings of the reference by a top–down traversal on

the trie and align these substrings against the query

by dynamic programming. BWA-SW furthers

BWT-SW by representing the query as a directed

word graph (DAWG) [52], which also enables it to

deploy heuristics to accelerate alignment.

Bowtie and BWA also sample short substrings of

the reference, but instead of performing dynamic

programming, they compare the query and sampled

substrings only allowing a few differences. In add-

ition, as they require the entire read to be aligned,

the traversal of the trie can be bounded since it is

unnecessary to descend deeper in the trie if it can be

predicted that doing so leads to an alignment with

excessive mismatches and gaps. Alternatively, Bowtie

and BWA can be considered to enumerate all com-

binations of possible mismatches and gaps in the

query sequence such that the altered query can be

aligned exactly.

ALIGNING NEWSEQUENCING
READS
The algorithms reviewed above are general tech-

niques. Depending on the characteristics of the

sequencing technologies and their applications,

aligners for new sequence reads also implement

extra features.

Effect of gapped alignment
Sequence reads from Illumina and SOLiD technol-

ogies were initially 25 bp in length. Performing

gapped alignment for such short reads is computa-

tionally challenging because allowing a gap in this

case will slow down most seeding algorithms.

Fortunately, the growing read length makes gapped

alignment tractable, although this feature still comes

at the cost of efficiency. This raises the question

about whether gapped alignment is worth doing.

From Figure 2A, it is clear that gapped alignment

(curve ‘gap-se’) increases sensitivity by a few percent

in comparison to ungapped alignment (curve

‘ungap-se’), but does not reduce alignment errors.

To this end, gapped alignment does not seem to

be an essential feature. However, gapped alignment

plays a far more important role in variant discovery

[53, 54]. When gapped alignment is not imple-

mented, a read containing an indel polymorphism

may still be mapped to the correct position but

with consecutive mismatches towards the underlying

location of the indel. These mismatches can be seen

on multiple reads mapped to the same locus, which

cause most variant callers to call false SNPs. As a

Sequence alignment algorithms for next-generation sequencing 477
 at M

ichigan State U
niversity on O

ctober 27, 2011
http://bib.oxfordjournals.org/

D
ow

nloaded from

http://bib.oxfordjournals.org/

result, more false SNPs are predicted from ungapped

alignment (Figure 2B) and these SNPs cannot be

easily filtered out even with the help of sophisticated

tools such as the GATK realigner (http://tinyurl

.com/broad-gatk); all high-quality false SNPs by

‘gap-se’ are also around undetected long indels.

Furthermore, lacking gapped alignment may also

lead to false structural variation calls at least for

some algorithms. For example, on the simulated

data used in Figure 2B, when the aligner in use

does ungapped alignment only, an indel polymorph-

ism is seen causing seven reads mapped to a wrong

position with high confidence. BreakDancer [55]

predicts a high scoring translocation based on the

wrong alignments. Effective gapped aligners such as

BWA and novoalign (http://novocraft.com) do not

produce this false translocation. Therefore, gapped

alignment is essential to the variant discovery, but

how ChIP- and RNA-seq [2] may be affected is

an open question.

Role of paired-end and mate-pair
mapping
Some sequencing technologies produce read pairs

such that the two reads are known to be close to

each other in physical chromosomal distance.

These reads are called paired-end or mate-pair

reads. With this mate-pair information, a repetitive

read will be reliably placed if its mate can be placed

unambiguously. Alignment errors may be detected

and fixed when wrong alignments break the mate-

pair requirement. Figure 2A shows that paired-end

alignment outperforms single-end alignment in terms

of both sensitivity and specificity. The gain of sensi-

tivity is also obvious from SNP discovery (Figure 2B).

In addition, it is worth noting here that although

curve ‘novo-pe’ outperforms ‘gap-pe’ in Figure 2A,

the accuracy of SNP calls are similar in Figure 2B.

This is possibly because the extra alignment errors

from ‘gap-pe’ are random and thus contribute little

to variant discovery.

Using base quality in alignment
Smith et al. [20] discovered that using base quality

scores improves alignment accuracy because know-

ing the error probability of each base, the aligner

may pay lower penalty for an error-prone mismatch.

Figure 3 shows that using base quality score halves

alignment errors when the quality score is accurate.

In practice, however, accurate quality score is not

always available from the base calling pipeline.

Recalibration of quality score is recommended to

make this strategy more effective.

Aligning long sequence reads
Long reads have greater potential than short reads

to contain long indels, structural variations and mis-

assemblies in the reference genome. It is essential

for a long-read aligner to be permissive about

100

101

102

103

104

100

101

102

103

104

105

1.5 1.55 1.6 1.65 1.7 1.75 1.8 1.85

w

ro
ng

ly
 m

ap
pe

d
re

ad
s

mapped reads (x106)

gap-pe
gap-se

ungap-se
bwasw-se

novo-pe

150 160 170 180 190 200 210

fa

ls
e

S
N

P
s

called SNPs (x103)

gap-pe
gap-se

ungap-se
ungap-se-GATK

bwasw-se
novo-pe

A

B

Figure 2: Alignment and SNP call accuracy under
different configurations of BWA and Novoalign. (A)
Number of misplaced reads as a function of the number
of mapped reads under differentmapping quality cut-off.
Reads (108bp) were simulated from human genome
build36 assuming 0.085% substitution and 0.015% indel
mutation rate, and 2% uniform sequencing error rate.
(B) Number of wrong SNP calls as a function of the
numberofcalledSNPunderdifferentSNPqualitycut-offs.
Reads (108bp) were simulated from chr6 of the human
genome and mapped back to the whole genome. SNPs
are called and filtered by SAMtools. In both figures,
‘novo-pe’ denotes novoalign alignment; the rest corres-
pond to alignments under different configurations of
BWA, where ‘gap-pe’ stands for the gapped paired-end
(PE) alignment, ‘gap-se’ for gapped single-end (SE) align-
ment, ‘ungap-se’ for ungapped SE alignment, ‘bwasw-se’
for BWA-SW SE alignment, and ‘ungap-se-GATK’ for
alignmentcleanedby theGATKrealigner.

478 Li and Homer
 at M

ichigan State U
niversity on O

ctober 27, 2011
http://bib.oxfordjournals.org/

D
ow

nloaded from

http://tinyurl
http://novocraft.com
http://bib.oxfordjournals.org/

alignment gaps and to allow partially aligned read

sequences in alignment. At present, all programs cap-

able of genome-wide long-read alignment follow

the seed-and-extend paradigm, seeding the align-

ment using hash table index [8, 9] or more recently

FM-index [50, 51], and extending seed matches with

the banded Smith–Waterman algorithm. This allows

for sensitive detection of indels as well as allowing for

partial hits.

Aligning SOLiD reads
The SOLiD sequencing technology observes two

adjacent bases simultaneously. Each dinucleotide

(16 possibilities) is encoded as one of four possible

colors, with the encoding referred to as color space

(Figure 4A). Although the known primer base allows

for the decoding of a color read to bases (Figure 4B),

contiguous errors will arise from a single color

sequencing error in this conversion (Figure 4D).

Thus algorithms that naively decode a color read

will fail. Given the fact that reverse complementing

a base sequence is equivalent to reversing the color

sequence (Figure 4C), the proper solution is to

encode the reference as a color sequence and align

color reads directly to the color reference as if they

are base sequences with the exception of the com-

plementing rule. After alignment, color sequence

can be converted to base sequences with dynamic

programming [48].

Performing alignment entirely in the color space

may not be optimal, though. With color encoding,

one base mutation leads to two contiguous color

changes with some restrictions (Figure 4E). Two ad-

jacent consistent color changes are preferred over

two discontinuous changes. A better solution is to

perform a color-aware Smith–Waterman alignment

found in BFAST and SHRiMP [29, 56]. This exten-

sion to the standard Smith–Waterman algorithm

allows the detection of indels without the aid of

post-alignment analysis at the cost of increased com-

putational complexity. Most alignment algorithms

described in the previous sections can be applied to

SOLiD sequencing reads with few modifications

making them color space aware.

Aligning bisulfite-treated reads
Bisulfite sequencing is a technology to identify

methylation patterns [3]. From the alignment point

of view, unmethylated ‘C’ bases, or cytosines, are

converted to ‘T’ (sequences 1 and 4 in Figure 5)

and ‘G’ bases complement those cytosines converted

to ‘A’ (sequences 2 and 3). Directly aligning con-

verted sequences against the standard reference se-

quence would be difficult due to the excessive

mismatches. Most aligners capable of bisulfite align-

ments [24, 57] do the following. They create two

reference sequences, one with all ‘C’ bases converted

to ‘T’ bases (the C-to-T reference) and the other

with all ‘G’ bases converted to ‘A’ bases (the

G-to-A reference). In alignment, ‘C’ bases are con-

verted to ‘T’ base for reads and are mapped to the

A

B

D E

C

Figure 4: Color-space encoding. (A) Color space
encoding matrix. (B) Conversion between base and
color sequence. (C) The color encoding of the reverse
complement of the base sequence is the reverse of the
color sequence. (D) A sequencing error leads to con-
tiguous errors when the color sequence is converted
to base sequence. (E) A mutation causes two contigu-
ous color changes.

100

101

102

103

350 360 370 380 390 400 410

w

ro
ng

ly
 m

ap
pe

d
re

ad
s

mapped reads (x103)

novo-noQual
novo-qual

maq-noQual
maq-qual

Figure 3: Alignment accuracy of simulated reads
with and without base quality. Paired-end reads (51bp)
are simulated by MAQ from the human genome, assum-
ing 0.085% substitution and 0.015% indel mutation rate.
Base quality model is trained from run ERR000589
from the European short read archive. Base quality is
not used in alignment for curves with labels ended
with ‘-noQual’.

Sequence alignment algorithms for next-generation sequencing 479
 at M

ichigan State U
niversity on O

ctober 27, 2011
http://bib.oxfordjournals.org/

D
ow

nloaded from

http://bib.oxfordjournals.org/

C-to-T reference (then a C–T mismatch is effective-

ly regarded as a match); a similar procedure is per-

formed for the G-to-A conversion in the next round

of alignment. The results from two rounds of align-

ment are combined to generate the final report.

If there are no mutations or sequencing errors, a

bisulfite treated read can always be mapped exactly

in one of the two rounds.

Aligning spliced reads
Transcriptome sequencing, or RNA-seq [2], pro-

duces reads from transcribed sequences with introns

and intergenetic regions excluded. When RNA-seq

reads are aligned against the genomic sequence, a

read may be mapped to a splicing junction, which

will fail with a standard alignment algorithm. It is

possible to add sequences around known or pre-

dicted splicing junctions to the ref. [58] or more

cleverly to make the alignment algorithm aware of

known splicing junctions [24]. Nevertheless, novel

splicing will not be discovered this way.

QPALMA [59] and TopHat [60] were developed

to solve this problem. They first align reads to the

genome using a standard mapping program and

identify putative exons from clusters of mapped

reads or from reads mapped into introns at their

last few bases, possibly aided by splicing signals

learnt from real data. In the next round, potential

junctions are enumerated within a certain distance

around the putative exons. The unmapped reads

are then aligned against the sequences flanking the

possible junctions. Novel junctions can thus be

found. However, Trapnell et al. [60] have reported

that only 72% of splicing sites found by ERANGE

[58] can be identified by TopHat without using

known splicing sites (TopHat is able to consider

known splicing), indicating that incorporating

known splicing sites in alignment may be necessary

to RNA-seq. Readers are also referred to ref. [2] for

a more comprehensive review on practical issues on

processing RNA-seq data.

Realignment
Reads mapped to the same locus are highly corre-

lated, but all read aligners map a read independent of

others and thus cannot make use of the correlation

between reads or the expected coverage at the same

position. Especially in the presence of indels, not

using this correlation may lead to wrong an align-

ment around the tail of a read. For indel calling, it

is necessary to perform multi-alignment for reads

mapped to the same locus. Realigner [61] is such a

tool, but originally designed for capillary read align-

ment. GATK implements a different algorithm for

new sequencing data. Sophisticated indel callers such

as SAMtools [62] also implicitly realign reads around

potential indels.

Alignment software
Over 20 short-read alignment software have been

published in the past 2 years and dozens of more

are still unpublished. The availability of these tools

greatly boosts the development of alignment algo-

rithms, yet only a few of them are being heavily

used. Table 1 gives a list of free popular short-read

alignment software packages, based on the ‘tag

cloud’ of the SEQanswers forum (http://seqans

wers.com). They all output alignments in the SAM

format [62], the emerging standard alignment format

which is widely supported by alignment viewers

such as GBrowse [63], LookSeq [64], Tablet [65],

BamView [66], Gambit (http://tinyurl.com/

gambit-viewer), IGV (http://www.broadinstitute

.org/igv/) and MagicViewer (http://bioinformatics

.zj.cn/magicviewer/), as well as generic variant

callers such as SAMtools, GATK (http://tinyurl

.com/broad-gatk) VarScan [67] and BreakDancer

[55].

On speed, Bowtie and BWA typically align �7

Gbp against the human genome per CPU day.

In comparison, the standard Illumina base caller,

Bustard, processes �3 Gbp per CPU day and the

real-time image analysis requires similar amount of

CPU time to base calling (Skelly and Bonfields, per-

sonal communication). Therefore, alignment is no

longer the most time consuming step in the entire

data processing pipeline. Speed improvement will

not greatly reduce the time spent on data analyses.

For long reads, SSAHA2 and BLAT are still the

most popular aligners. However, their alignment

Figure 5: Bisulfite sequencing. Cytosines with under-
lines are not methylated. Denaturation and bisulfite
treatment will convert these cytosines to uracils.
After amplification, four different sequences from the
original double-strand DNA result.

480 Li and Homer
 at M

ichigan State U
niversity on O

ctober 27, 2011
http://bib.oxfordjournals.org/

D
ow

nloaded from

http://seqans
http://tinyurl.com/
http://www.broadinstitute
http://bioinformatics
http://tinyurl
http://bib.oxfordjournals.org/

speed is of the order of 0.5 Gbp per CPU day, much

slower than short-read aligners. Recently developed

algorithms such as Mosaik and BWA-SW are faster

and may alleviate this computational bottleneck.

CONCLUSIONSAND FUTURE
DEVELOPMENT
Short-read alignment is thought to be the computing

bottleneck of the analysis of new sequencing data.

Fortunately, the active development of alignment

algorithms opens this bottleneck even with the rap-

idly increasing throughput of sequencing machines.

In a couple of years, however, long reads will dom-

inate again and programs developed for short reads

will not be applicable; long-read alignment and

de novo assembly will become crucial.

In addition, while major sequencing centers have

sufficient localized computing resources to analyze

data at present, such resources are not available to

small research groups, which hamper the application

of new sequencing technologies. Even between

major centers, data sharing in a large collaborative

project such as the 1000 genomes project (http://

1000genomes.org) poses challenges. One possible

solution to these problems might be cloud comput-

ing, with data uploaded and analyzed in a shared

cloud. Several researchers [26, 68] have explored

this approach, but establishing a cloud computing

framework requires the efforts of the entire commu-

nity. Furthermore, data transfer bottlenecks and

leased storage have yet to be proved cost-effective

for cloud computing.

Another trend of development is the simultan-

eous alignment against multiple genomes. Li et al.
[69] have found the presence of extensive novel se-

quences absent from the human reference genome,

which may lead to the loss of information when

reads are aligned to a single genome. In the light

of large-scale resequence projects such as the

1000 genomes project, the Drosophila population

genomics project (http://dpgp.org) and the 1001

genomes project (http://1001genomes.org), align-

ment against multiple genomes will become increas-

ingly important. Several groups [70, 71] have

pioneered in this direction; the proposal of unifying

multi-genome alignment and de novo assembly with

an assembly graph (Birney and Durbin, personal

communication) is attractive, but how to apply the

methods given genome-wide human data is yet to be

solved in practice.

Key Points

� The advent of new sequencing technologies paves the way
for various biological studies, most of which involves sequence
alignment in an unparalleled scale.

� The development of alignment algorithms has been successful
and short-read alignment against a single reference is not the
bottleneck in data analyses anymore.

� With the increasing read lengths produced by the new sequen-
cing technologies, we expect further development in multi-
reference alignment, long-read alignment and de novo assembly.

Acknowledgements
We thank the three anonymous reviewers whose comments

helped us to improve the manuscript.

FUNDING
H.L. is supported by the NIH grant 1U01HG005208-

01 and N.H. by 1U01HG005210-01.

References
1. Dalca AV, Brudno M. Genome variation discovery with

high-throughput sequencing data. Brief Bioinform 2010;11:
3–14.

2. Pepke S, Wold B, Mortazavi A. Computation for ChIP-seq
and RNA-seq studies. NatMethods 2009;6:S22–32.

3. Cokus SJ, Feng S, Zhang X, et al. Shotgun bisulphite
sequencing of the Arabidopsis genome reveals DNA
methylation patterning. Nature 2008;452:215–9.

4. Flicek P, Birney E. Sense from sequence reads: methods for
alignment and assembly. NatMethods 2009;6:S6–12.

5. Simpson JT, Wong K, Jackman SD, et al. ABySS: a parallel
assembler for short read sequence data. GenomeRes 2009;19:
1117–23.

6. Li R, Zhu H, Ruan J, et al. De novo assembly of human
genomes with massively parallel short read sequencing.
Genome Res 2010;20:265–72.

7. Metzker ML. Sequencing technologies – the next genera-
tion. Nat Rev Genet 2010;11:31–46.

8. Ning Z, Cox AJ, Mullikin JC. SSAHA: a fast search method
for large DNA databases. GenomeRes 2001;11:1725–9.

9. Kent WJ. BLAT–the BLAST-like alignment tool. Genome
Res 2002;12:656–64.

10. Malhis N, Butterfield YSN, Ester M, etal. Slider–maximum
use of probability information for alignment of short
sequence reads and SNP detection. Bioinformatics 2009;25:
6–13.

11. Malhis N, Jones SJ. High quality SNP calling using Illumina
data at shallow coverage. Bioinformatics 2010;26:1029–35.

12. Altschul SF, Gish W, Miller W, et al. Basic local alignment
search tool. JMol Biol 1990;215:403–10.

13. Altschul SF, Madden TL, Schaffer AA, etal. Gapped BLAST
and PSI-BLAST: a new generation of protein database
search programs. Nucleic Acids Res 1997;25:3389–402.

14. Smith TF, Waterman MS. Identification of common
molecular subsequences. JMol Biol 1981;147:195–7.

Sequence alignment algorithms for next-generation sequencing 481
 at M

ichigan State U
niversity on O

ctober 27, 2011
http://bib.oxfordjournals.org/

D
ow

nloaded from

http://
http://dpgp.org
http://1001genomes.org
http://bib.oxfordjournals.org/

15. Gotoh O. An improved algorithm for matching biological
sequences. JMol Biol 1982;162:705–8.

16. Ma B, Tromp J, Li M. PatternHunter: faster and more
sensitive homology search. Bioinformatics 2002;18:440–5.

17. Li R, Li Y, Kristiansen K, etal. SOAP: short oligonucleotide
alignment program. Bioinformatics 2008;24:713–4.

18. Jiang H, Wong WH. SeqMap: mapping massive amount
of oligonucleotides to the genome. Bioinformatics 2008;24:
2395–6.

19. Li H, Ruan J, Durbin R. Mapping short DNA sequencing
reads and calling variants using mapping quality scores.
Genome Res 2008;18:1851–8.

20. Smith AD, Xuan Z, Zhang MQ. Using quality scores and
longer reads improves accuracy of Solexa read mapping.
BMCBioinformatics 2008;9:128.

21. Smith AD, Chung WY, Hodges E, et al. Updates to the
RMAP short-read mapping software. Bioinformatics 2009;25:
2841–2.

22. Baeza-Yates RA, Perleberg CH. Fast and practical approx-
imate string matching. In: Apostolico A, Crochemore M,
Galil Z, Manber U, (eds). CPM, Lecture Notes in Computer
Science, Vol. 644. Berlin: Springer, 1992:185–92.

23. Lin H, Zhang Z, Zhang MQ, et al. ZOOM! Zillions of
oligos mapped. Bioinformatics 2008;24:2431–7.

24. Wu TD, Nacu S. Fast and SNP-tolerant detection of com-
plex variants and splicing in short reads. Bioinformatics 2010;
26:873–81.

25. Homer N, Merriman B, Nelson SF. BFAST: an alignment
tool for large scale genome resequencing. PLoSOne 2009;4:
e7767.

26. Schatz M. CloudBurst: highly sensitive read mapping with
MapReduce. Bioinformatics 2009;25:1363–9.

27. Chen Y, Souaiaia T, Chen T. PerM: efficient mapping of
short sequencing reads with periodic full sensitive spaced
seeds. Bioinformatics 2009;25:2514–21.

28. Clement NL, Snell Q, Clement MJ, et al. The GNUMAP
algorithm: unbiased probabilistic mapping of oligonucleo-
tides from next-generation sequencing. Bioinformatics 2010;
26:38–45.

29. Rumble SM, Lacroute P, Dalca AV, et al. SHRiMP: accu-
rate mapping of short color-space reads. PLoS Comput Biol
2009;5:e1000386.

30. Weese D, Emde AK, Rausch T, et al. RazerS–fast read
mapping with sensitivity control. Genome Res 2009;19:
1646–54.

31. Jokinen P, Ukkonen E. Two algorithms for approximate
string matching in static texts. In: MFCS, Lecture Notes in
Computer Science, Vol. 520. Berlin: Springer, 1991:240–8.

32. Cao X, Li SC, Tung AKH. Indexing DNA sequences using
q-Grams. In: Zhou L, Ooi BC, Meng X, (eds). DASFAA,
Lecture Notes in Computer Science, Vol. 3453. Berlin:
Springer, 2005:4–16.

33. Burkhardt S, Kärkkäinen J. Better filtering with gapped
q-grams. In: Apostolico A, Takeda M, (eds). CPM, Lecture
Notes in Computer Science, Vol. 2089. Berlin: Springer,
2001:73–85.

34. Farrar M. Striped Smith-Waterman speeds database searches
six times over other SIMD implementations. Bioinformatics
2007;23:156–61.

35. Eppstein D, Galil Z, Giancarlo R, Italiano GF. Sparse
dynamic programming. In: SODA. Philadelphia: Society
for Industrial and Applied Mathematics, 1990;513–22.

36. Slater GSC, Birney E. Automated generation of heuristics
for biological sequence comparison. BMC Bioinformatics
2005;6:31.

37. Myers EW. An O(ND) Difference algorithm and its
variations. Algorithmica 1986;1(2):251–66.

38. Abouelhoda MI, Kurtz S, Ohlebusch E. Replacing suffix
trees with enhanced suffix arrays. JDiscreteAlgorithms 2004;2:
53–86.

39. Ferragina P, Manzini G. Opportunistic data structures with
applications. In: Proceedings of the 41st Symposium on
Foundations of Computer Science (FOCS 2000), Redondo Beach,
CA,USA. 2000;390–8.

40. Burrows M, Wheeler DJ. A block-sorting lossless data com-
pression algorithm. Technical Report 124, Digital
Equipment Corporation. CA: Palo Alto, 1994.

41. Munro JI, Raman V, Rao SS. Space efficient suffix trees.
JAlgorithms 2001;39(2):205–22.

42. Kurtz S, Phillippy A, Delcher AL, et al. Versatile and open
software for comparing large genomes. Genome Biol 2004;5:
R12.

43. Manber U, Myers EW. Suffix arrays: a new method
for on-line string searches. SIAM J Comput 1993;22:
935–48.

44. Navarro G. A guided tour to approximate string matching.
ACMComput Surv 2001;33:31–88.

45. Meek C, Patel JM, Kasetty S. OASIS: an online and accu-
rate technique for local-alignment searches on biological
sequences. In: Proceedings of 29th International Conference on
Very Large Data Bases (VLDB 2003), Berlin. 2003;910–21.

46. Hoffmann S, Otto C, Kurtz S, et al. Fast mapping of short
sequences with mismatches, insertions and deletions using
index structures. PLoSComput Biol 2009;5:e1000502.

47. Langmead B, Trapnell C, Pop M, et al. Ultrafast and
memory-efficient alignment of short DNA sequences to
the human genome. Genome Biol 2009;10:R25.

48. Li H, Durbin R. Fast and accurate short read alignment
with Burrows-Wheeler transform. Bioinformatics 2009;25:
1754–60.

49. Li R, Yu C, Li Y, et al. SOAP2: an improved
ultrafast tool for short read alignment. Bioinformatics 2009;
25:1966–7.

50. Lam TW, Sung WK, Tam SL, et al. Compressed index-
ing and local alignment of DNA. Bioinformatics 2008;24:
791–7.

51. Li H, Durbin R. Fast and accurate long-read alignment
with Burrows-Wheeler transform. Bioinformatics 2010;
26(5):589–95.

52. Blumer A, Blumer J, Haussler D, et al. The smallest auto-
maton recognizing the subwords of a text. Theoretical
Computer Science 1985;40:31–55.

53. Ossowski S, Schneeberger K, Clark RM, et al. Sequencing
of natural strains of Arabidopsis thaliana with short reads.
Genome Res 2008;18:2024–2033.

54. Krawitz P, Rödelsperger C, Jäger M, et al. Microindel
detection in short-read sequence data. Bioinformatics 2010;
26:722–9.

482 Li and Homer
 at M

ichigan State U
niversity on O

ctober 27, 2011
http://bib.oxfordjournals.org/

D
ow

nloaded from

http://bib.oxfordjournals.org/

55. Chen K, Wallis JW, McLellan MD, et al. BreakDancer: an
algorithm for high-resolution mapping of genomic struc-
tural variation. NatMethods 2009;6:677–81.

56. Homer N, Merriman B, Nelson SF. Local alignment of
two-base encoded DNA sequence. BMC Bioinformatics
2009;10:175.

57. Xi Y, Li W. BSMAP: whole genome bisulfite sequence
MAPping program. BMCBioinformatics 2009;10:232.

58. Mortazavi A, Williams BA, McCue K, et al. Mapping
and quantifying mammalian transcriptomes by RNA-Seq.
NatMethods 2008;5:621–8.

59. De Bona F, Ossowski S, Schneeberger K, et al. Optimal
spliced alignments of short sequence reads. Bioinformatics
2008;24:i174–80.

60. Trapnell C, Pachter L, Salzberg SL. TopHat: discovering
splice junctions with RNA-Seq. Bioinformatics 2009;25:
1105–11.

61. Anson EL, Myers EW. ReAligner: a program for refining
DNA sequence multi-alignments. J Comput Biol 1997;4(3):
369–83.

62. Li H, Handsaker B, Wysoker A, et al. The sequence align-
ment/map format and SAMtools. Bioinformatics 2009;25:
2078–9.

63. Stein LD, Mungall C, Shu S, et al. The generic genome
browser: a building block for a model organism system
database. GenomeRes 2002;12(10):1599–610.

64. Manske HM, Kwiatkowski DP. LookSeq: a browser-based
viewer for deep sequencing data. Genome Res 2009;19(11):
2125–32.

65. Milne I, Bayer M, Cardle L, et al. Tablet–next generation
sequence assembly visualization. Bioinformatics 2010;26(3):
401–2.

66. Carver T, Bohme U, Otto T, et al. BamView: viewing
mapped read alignment data in the context of the reference
sequence. Bioinformatics 2010;26(5):676–7.

67. Koboldt DC, Chen K, Wylie T, et al. VarScan: variant
detection in massively parallel sequencing of individual
and pooled samples. Bioinformatics 2009;25:2283–5.

68. Langmead B, Schatz MC, Lin J, et al. Searching for SNPs
with cloud computing. Genome Biol 2009;10(11):R134.

69. Li R, Li Y, Zheng H, et al. Building the sequence map of
the human pan-genome. Nat Biotechnol 2010;28:57–63.

70. Schneeberger K, Hagmann J, Ossowski S, et al.
Simultaneous alignment of short reads against multiple
genomes. Genome Biol 2009;10:R98.

71. Mäkinen V, Navarro G, Sirén J, et al. Storage and retrieval
of individual genomes. In: Batzoglou S (ed). RECOMB,
Lecture Notes in Computer Science,Vol. 5541. Berlin: Springer,
2009;121–37.

Sequence alignment algorithms for next-generation sequencing 483
 at M

ichigan State U
niversity on O

ctober 27, 2011
http://bib.oxfordjournals.org/

D
ow

nloaded from

http://bib.oxfordjournals.org/

