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Assembling individual genomes from complex community metagenomic data remains a challenging
issue for environmental studies. We evaluated the quality of genome assemblies from community
short read data (Illumina 100 bp pair-ended sequences) using datasets recovered from freshwater
and soil microbial communities as well as in silico simulations. Our analyses revealed that the
genome of a single genotype (or species) can be accurately assembled from a complex metagenome
when it shows at least about 20� coverage. At lower coverage, however, the derived assemblies
contained a substantial fraction of non-target sequences (chimeras), which explains, at least in part,
the higher number of hypothetical genes recovered in metagenomic relative to genomic projects. We
also provide examples of how to detect intrapopulation structure in metagenomic datasets and
estimate the type and frequency of errors in assembled genes and contigs from datasets of varied
species complexity.
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Introduction

Next generation sequencing (NGS) technologies
such as the Roche 454 and the Illumina/Solexa
(Bennett, 2004; Margulies et al., 2005) are revolu-
tionizing the study of natural microbial commu-
nities (DeLong et al., 2006; Konstantinidis et al.,
2009; Qin et al., 2010). A major objective of
metagenomic studies is to recover the genome
sequence, complete or draft, of a genotype or species
from a sample. Short-read (for example, 50–100 bp)
NGS technologies are becoming increasingly popu-
lar due to their high-throughput, but it remains
unclear whether these technologies can be used to
robustly recover individual genomes from complex
communities. Several recent studies have attempted
to evaluate the sequencing errors and artifacts
specific to each NGS platform (Gomez-Alvarez
et al., 2009; Quince et al., 2009; Aird et al., 2011);
however, most of these studies have not assessed
assembly quality and/or have employed simple
DNA samples (for example, single viral genomes)

and thus, the relevance of their results for complex
community samples remains to be evaluated. More-
over, the presence of closely related species in the
sample may complicate the assembly of a single
genotype.

Assembling genomes from metagenomes

To provide quantitative insights into the issues
above, we generated a series of in silico meta-
genomes by spiking reference genome reads into a
background metagenome (Lanier.Illumina) and com-
pared the derived assembly against the assembly of
the reference genome from the genome reads alone
(Supplementary Figure S1). For this analysis, we
used the Escherichia sp. strain TW10509, whose
genome sequence we described previously (Luo
et al., 2011) and which has no close relatives in
the Lake Lanier sample (Supplementary Figure S2),
as reference. The Lanier.Illumina dataset was
described in detail elsewhere (Oh et al., 2011),
originated from a freshwater planktonic community
sample from Lake Lanier (Atlanta, GA, USA) and
represents a total of 3640 Mbp sequence data (100 bp
pair-ended reads; average GþC content B50%)
obtained using the Illumina GA-II sequencer
(Illumina, Inc., San Diego, CA, USA). The commu-
nity complexity in the sequenced sample
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(in terms of species richness and evenness) was
comparable to that of previously characterized open
ocean communities.

We varied the reference genome abundance,
measured by the average coverage of the genome in
the final in-silico generated metagenome, more than
30-fold (that is, 1� to 35�). As expected, the
fraction of the reference genome recovered increased
exponentially in the low coverage range and reached
a plateau at about 20� coverage (Figure 1d). We also
observed that greater than 20� coverage did not
improve the recovery of the target genome substan-
tially; thus, obtaining greater coverage is not
recommended (unless a different library insert size
is used for closing purposes). Surprisingly, more
than 10% of the total assembled contigs that
belonged to the reference genome (that is, contained
target sequences) were contaminated by non-target
sequences at low coverage (1�) and this portion
decreased to B0.2% when coverage exceeded 15�
(Figure 1c), which agrees with previous results from
simulations (Mavromatis et al., 2007). Similar
results were obtained when the reference genome
represented an organism with close relatives in
Lanier.Illumina (Supplementary Figures S3–S8),
albeit the sequences of the relatives generally had

a positive effect on the quality of the derived
assemblies (Supplementary Figures S5–S6). We also
quantitatively assessed the errors in the consensus
sequences of the derived assemblies. About 1% of
the total genes recovered in the Illumina assembly at
15� coverage contained homopolymer-associated
sequencing errors (that is, three or more consecutive
identical DNA bases), resulting in truncated protein
sequences or frameshifts. This number increased to
about 3% when non-homopolymer-associated errors
were also taken into account. Preliminary analyses
revealed that the findings reported above were also
applicable to a more complex soil metagenome,
originating from a temperate (bulk) soil sample
(Figures 1b and c), although the average length of
the assembled contigs of the reference genome was
consistently shorter in the soil spiked-in dataset
(Figure 1a) owing to the higher complexity of the
soil community (Supplementary Figure S9).

Investigating intrapopulation genetic
structure

Natural populations are frequently composed of
several closely related genotypes as opposed to a
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Figure 1 Sequence errors and artifacts in assembled contigs of a target genotype from a complex metagenome. The assembly of a
reference genome (Escherichia sp. TW10509) based solely on its own reads (reference assembly) was compared with the assembly of the
genome from the in silico metagenome, which was composed of Lanier.Illumina spiked in with reads of the reference genome.
(a) Comparison of N50, that is, the contig length that 50% of the entire assembly is contained in contigs no shorter than this length,
between the latter and the reference assemblies over different reference genome coverage (abundance). (b) Single base call error rate
decreased dramatically as reference genome abundance in the metagenome increased and reached a plateau at about 20� coverage.
(c) At low coverage, contigs from the metagenome assembly had a substantial portion of non-targeted (chimeric) sequences. (d) Frequency of
frameshift errors as a function of the reference genome abundance. Results from similar analyses using a higher-complexity
(Supplementary Figure S9) soil metagenome of similar size to the Lanier.Illumina metagenome are also shown for comparison.
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single genotype. It remains challenging to use
metagenomics for the robust assessment of intrapo-
pulation genetic structure, for example, to detect
heterogeneous populations. To this end, we
expanded the single genotype analysis to include
five additional Escherichia sp. genomes, which
show pairwise genetic relatedness ranging from
90% to 95% average nucleotide identity (ANI,
(Konstantinidis and Tiedje, 2005); Supplementary
Table S1 & Supplementary Figure S10). Regardless
of the composition of the target population in the
in silico generated metagenome, the six genomes were
recovered as a discrete sequence cluster when all
metagenomic reads were mapped on the reference
Escherichia sp. strain TW10509 genome (Figure 2).
The sequence-discrete clusters were obvious for
other reference populations as long as no close
relatives with higher than B85% ANI to the
population were present in the metagenome.
Furthermore, the shape of the coverage plot reliably
reflected the target population genetic structure:
when the population was homogeneous (that is, all
genomes were spiked at similar abundances) the
shape of the coverage plot approximated a normal
distribution around the average ANI of the six
genomes (B92%); when the population structure
was heterogeneous (for example, one genome more
abundant than the others), the shape of the coverage
plot deviated from the normal-like distribution and
quantitatively reflected the variations in individual
genome abundance (Figure 2). However, we were
unable to recover robust assemblies of individual

genotypes, even in trials where the target genotype
consisted more than 50% of the population (Sup-
plementary Figure S11) or when a high nucleotide
identity cutoff in the assembly was used due to the
fact that assemblers apply consensus strategy when
encountering polymorphisms.

The results presented here reveal the errors and
limitations as well as the strengths of metagenomics
for population analysis, and provided practical
standards and guidelines for experimental design
and analysis (for example, Supplementary Table S2).
Some of our results should be independent of the
NGS platform used and therefore broadly applicable
to short-read sequencing.
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