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Microorganisms are spectacularly diverse phylogenetically, but
available estimates of their species richness are vague and prob-
lematic. For example, for comparable environments, the estimated
numbers of species range from a few dozen or hundreds to tens of
thousands and even half a million. Such estimates provide no
baseline information on either local or global microbial species
richness. We argue that this uncertainty is due in large part to the
way statistical tools are used, if not indeed misused, in biodiversity
research. Here we develop a powerful synthetic statistical ap-
proach to quantify biodiversity. It provides statistically sound
estimates of microbial richness at any level of taxonomic hierarchy.
We apply this approach to a large original 16S rRNA dataset on
marine bacterial diversity and show that the number of bacterial
species in a sample from marine sediments is (2.4 � 0.5 SE) � 103.
We argue that our methodology provides estimates of microbial
richness that are reliable and general, have biologically meaningful
SEs, and meet other fundamental statistical standards. This ap-
proach can be an essential tool in biodiversity research, and the
estimates of microbial richness presented here can serve as a
baseline in microbial diversity studies.

global biodiversity � microorganisms � number of species

The number of microbial species in nature may be in the millions
(1), but most have never been observed or otherwise detected;

the existence of these species is predicted. Regrettably, the available
predictions are essentially guesswork, conjectured from high (but
equally uncertain) estimates of local microbial species richness.
The latter cannot be measured directly, for the same reason that the
global diversity has yet to be quantified; it’s simply too large for the
methodology available. [There are several measures or indices of
diversity in a population (2), but here we focus on the number of
species or species richness.] The best tool for microbial detection is
the rRNA approach (3), but even large 16S rRNA clone libraries
seem to capture only a small fraction of the original richness. Thus,
the number of species in all but the simplest communities can only
be estimated statistically, typically on the basis of a small subset of
species (or their rRNA sequences) observed directly. Remarkably,
even for samples obtained from similar environments (e.g., soils),
such estimates vary widely: from a few dozen and hundreds (4, 5)
to tens of thousands (6) to half a million (7). Clearly, the validity of
such estimates is questionable. The quality of microbial richness
predictions is however an important issue as they serve as a basis for
all of the paradigms of biodiversity, its role, function, and meaning.
It is therefore of principal interest to know the true extent of
microbial diversity, starting from that in a single environmental
sample. The question therefore is: what is the total number of
microbial species in a sample, habitat, and biosphere?

Two approaches have been developed and used to answer this
question. Historically first was the idea to use parametric distribu-
tions to approximate the frequency distribution of captured species,
and to project the given distribution so as to estimate how many
more species must be present in the community to account for the
empirically collected data (8). This powerful tool has often not been
used to its potential. While there is an infinite number of candidate
parametric distributions, only one, the lognormal, has been com-
monly used. This choice was apparently based largely on theoretical
considerations (6), but it has been frequently challenged (9).

Furthermore, microbial data are frequencies of specific PCR
products and clones in rRNA gene libraries, which may have little
to do with the frequency distribution of real species in nature, even
if the latter is indeed lognormal. In short, there is no convincing a
priori reason to rely exclusively on the lognormal distribution to
predict the number of microbial species. Perhaps more importantly,
the applications of the lognormal and a handful of other distribu-
tions tested on occasion [the Poisson, negative binomial, and inverse
Gaussian-mixed Poisson (10)] have often been statistically incor-
rect. To the best of our knowledge, previous applications in this area
did not use maximum likelihood (ML) estimation of model param-
eters, reliable goodness-of-fit assessment, or correct ML SEs. In
addition, previous literature has sometimes failed to take into
account relevant existing and current research in mathematical
statistics, and the inconclusive nature of theoretical justifications of
the choice of parametric model. The published applications of
parametric distributions to estimate species richness have erred in
other important ways as well, which we discuss later in this paper.

The second group of species richness estimation methods uses
coverage-based nonparametric estimators, such as Chao’s esti-
mators ACE and ACE1 (11). This approach dominates the
landscape of microbial diversity research (5) but in many cases
may be inappropriate for the purpose. To perform well, cover-
age-based nonparametric estimators require a large empirical
database that covers the total diversity well (10). In case of
microbial communities, this condition is often not met because,
save for a few exceptions, even the largest rRNA gene libraries
capture only a small fraction of all of the species. As a result,
coverage-based nonparametric estimates of microbial richness
are likely to underestimate the true diversity.

In the biological literature, rarefaction analysis is often used to
address this issue (12). Such analysis is not counterintuitive and may
have heuristic value (but see ref. 13 for an early critique). However,
the theoretical foundations of resampling methods such as rarefac-
tion, the jackknife, bootstrap, etc., in the problem of species richness
estimation are not yet established. Indeed the problem may violate
certain technical regularity conditions for the validity (asymptotic
convergence) of resampling methods, at least without careful
modifications of these methods (see, e.g., ref. 14); this is an open
problem in mathematical statistics. Fortunately, we do not require
resampling methods for variance estimation (SEs), because classical
asymptotic theory provides direct formulas for SEs for both para-
metric and coverage-based nonparametric estimators. Further-
more, our model selection and choice of right truncation point
(maximum frequency to be analyzed) are based on goodness-of-fit
statistics rather than resampling. A new methodology, nonpara-
metric ML estimation (which we have not used here) does appear
to require resampling for variance estimation (15); this paper also
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includes a careful application of the bootstrap, and further theo-
retical development in mathematical statistics will be needed to
justify and�or modify resampling methods for this application.

In the end, microbial diversity research has generated a
substantial pool of rRNA richness data but has not gathered
sufficient statistical resources to use these data to quantify the
total microbial species richness. We think that this is the
principal reason why the available estimates of microbial richness
differ so dramatically as to provide essentially no baseline
information. Here we develop a comparative approach that
employs several parametric and nonparametric tools, including
all those used to date and also two that are new to biodiversity
research (the Pareto-mixed and mixture-of-exponentials-mixed
Poisson distributions). We analyze the performance of all para-
metric models and nonparametric estimators on all possible
right-truncated subsets of the data, and we choose the best
performer on the basis of (i) two goodness-of-fit tests, (ii) ability
to produce a biologically meaningful SE, and (iii) use of the
maximum amount of the empirical species frequency data
(largest right truncation point). [Another very useful approach
to model selection is based on information-theoretic assessments
such as the Akaike information criterion (16). However, in our
view these methods have not yet achieved the flexibility needed
to address the multifaceted model-selection problem faced
here.] To carry out the ML computations, we constructed a new,
accelerated expectation-maximization algorithm (15), with lo-
cally adaptive approximations to the distribution functions (par-
ticularly the lognormal- and Pareto-mixed Poisson). This algo-
rithm allows us to obtain correct ML estimates of the parameters
and to compute (asymptotically) correct SEs, simultaneously for
all parametric models. We use the newly available software
SPADE (17) for the coverage-based nonparametric estimates. We
apply this strategy to a large original 16S rRNA survey of
bacteria in a marine sediment sample, and we analyze the
amount of ‘‘missing’’ diversity at different phylogenetic levels,
from operational taxonomic units (OTUs) combining very sim-
ilar organisms to OTUs representing large clades (99–60%
sequence identity as cut-off values). For each identity cut-off
value, we find that there is at least one model with acceptable
goodness-of-fit and SE, and we choose this model to estimate the
sample’s microbial richness. We argue that the resulting esti-
mates are accurate and reliable, and can therefore be used as a
baseline in microbial diversity research.

Methods
Microbial samples came from an intertidal sand flat in Massa-
chusetts Bay, near the Marine Science Center of Northeastern
University (Nahant, MA). We collected an undisturbed core of
sediment 15 cm deep and 13 cm in diameter, thoroughly mixed
it, and subsampled the mix. We extracted DNA from a 5-g
subsample after ref. 18, PCR-amplified the 16S rRNA gene using
27F and 1492R primers (19), and cloned and sequenced the PCR
products. After manual editing and elimination of potentially
chimeric sequences (7% of total number), the 16S rRNA gene
sequences were grouped into OTUs based on 99%, 98%, 97%,
96%, 95%, 90%, 80%, 70%, 60%, and 50% sequence similarity
cut-off values. This grouping was achieved by first making all
possible pair-wise sequence alignments by using CLUSTALW at
default settings, and calculating % sequence identities, followed
by clustering the sequences into OTUs by using the unweighted
pair group method with arithmetic mean as implemented in the
OC clustering program (20). The OTU grouping was checked
manually to verify that all OTUs were assembled at the cut-off
level desired. The number of OTUs and their frequencies at each
cut-off value became the subject of statistical analyses.

We applied two families of statistical procedures to these
frequency data; for a summary of the statistical theory see ref.
10. In the first, we use six parametric models (the ordinary

Poisson and the gamma, inverse Gaussian, lognormal, Pareto,
and mixture-of-2-exponentials mixed Poisson), and we fit each to
the frequency data by the method of ML. The ordinary (un-
mixed) Poisson assumes equal species abundances, and the
gamma, inverse Gaussian, and lognormal are 2-parameter abun-
dance distributions that have been applied in the literature (10)
(although with approximate computations and without ML
SEs). The latter two distributions are new to this problem. We
selected a 2-parameter (shape � scale) Pareto for its ability to
model extreme phenomena (such as very abundant or rare
species). The mixture-of-2-exponentials attempts to represent
the species abundances as a mixture (convex combination) of two
groups or subpopulations, each represented by a different ex-
ponential abundance distribution; this is a 3-parameter model.

Typically no currently available parametric model will fit a
complete dataset of this type, so we separate the observations
into ‘‘rare’’ vs. ‘‘abundant’’ species, i.e., those with sample
frequencies less than or equal to some right-truncation point,
and those with frequencies above this point. We fit all models to
all possible collections of ‘‘rare’’ frequencies (all possible right-
truncation points), and calculated the ML SE, two �-square
goodness-of-fit statistics (one straightforward or ‘‘naı̈ve,’’ and
one with adjacent frequencies concatenated so as to achieve an
expected frequency count of at least 5, and hence an asymptot-
ically correct P value). All numeric computations used the same
basic algorithm so as to yield directly comparable results. Finally,
we selected the ‘‘best of the best’’ as the final parametric analysis,
searching for the smallest SE, largest right-truncation point, and
best goodness-of-fit.

The second family of procedures consists of the coverage-
based nonparametric estimators (11, 21). The coverage of the
sample is the fraction of the population represented by the
species that have been discovered. These estimators start with a
nonparametric coverage-based richness estimate, and further
adapt nonparametrically to the degree of variability in the
frequency counts; different estimators are recommended de-
pending on the degree of variability observed (11). For the
required computations, we used the software SPADE (17). We
calculated these estimates and their SEs for the collections of
rare frequencies corresponding to the right-truncation points
resulting from the best parametric analyses. Because the cover-
age-based nonparametric estimators do not fit parametric mod-
els, goodness-of-fit does not apply. We selected the ‘‘best’’
coverage-based nonparametric estimator using recommenda-
tions based on findings in the research literature as summarized
in the SPADE documentation.

Results
The bacterial assemblage recovered by the application of the
rRNA approach appeared very diverse, as typical for the chem-
ically diverse environment of marine tidal f lats (Table 1). The
556 clones obtained grouped into 459, 405, 380, 351, 328, 233, 92,
16, and 1 OTUs, respectively, at the sequence identity cut-off
values of 99%, 98%, 97%, 96%, 95%, 90%, 80%, 70%, and 60%.
The frequency distributions of OTUs at selected levels of
identity are given in Fig. 1.

Six parametric models were tested for their ability to describe
the probability distribution of the OTUs’ frequencies, with
OTUs defined as clusters with varying rRNA identity (99% to
70% in 8 steps). There appeared to be no hands-down winner as
no single model performed universally well at all OTU identity
levels. Two models, the Poisson (equal species sizes) and the
negative binomial (gamma-mixed Poisson), provided no realistic
estimates of microbial richness with meaningful SEs, or exhibited
unacceptable goodness-of-fit, or both (data not shown). The
performance of the other four parametric models depended on
the level of OTU grouping. The lognormal model appeared to
be optimal when the number of OTUs was the highest (99%
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sequence identity cut-off value) and the frequency distribution
had a long upward tail due to a large number of singletons (Fig.
1). As the frequency distribution gradually became long tailed
along both the horizontal and vertical axes, the best parametric
distribution to describe it became the Pareto at 98% and 97%,
and 2-mixed exponential at 96%, 95%, and 90%. Finally, the

probability distribution of OTUs at the 80% and 70% cut-off
levels were best described by the inverse Gaussian model.
Parametric maximum-likelihood-based estimates of the total
richness and the corresponding SE, along with goodness-of-fit
statistics, are given in Table 2. The estimates of the sample’s
richness based on two frequently used nonparametric estimators,
ACE and ACE1, are also given in Table 2.

Discussion
The main rationale for this research is that knowledge of microbial
diversity is crucial for our understanding of the structure, function,
and evolution of biological communities (1, 7, 22–25), but current
estimates of numbers of microbial species are either vague or
inaccurate. The coverage-based nonparametric estimators are
widely used to estimate microbial richness (4, 5) because of their
attractive simplicity. However, they likely underestimate this diver-
sity, in accordance with theoretical expectations (10): the smaller
and more diverse the empirical dataset is, the greater the under-
estimation. Our environmental clone library contains �500 clones
and �400 hundred unique species and strains (defined as sequence
clusters with 97–99% identity), and as such it is larger than the
absolute majority of such libraries reported in literature (5). Even
though we achieved a better coverage of the extant diversity than
most previous studies, ACE and ACE1 estimate its richness at a
10–50% lower level than the parametric methods (Table 2). Typ-
ically, environmental clone libraries are a small percentage of the
size of the one obtained here (5), and the use of coverage-based
nonparametric estimators on such smaller datasets should lead to
an even larger degree of underestimation of the ‘‘missing’’ diversity.
This may well explain why microbial richness appears rather low
whenever it is estimated with nonparametric tools (4, 5). Clearly,
coverage-based nonparametric procedures are not the final word
when the object is highly diverse microbial communities.

The applications of parametric distributions in microbial diversity
research are few and not always well executed. In the Introduction,
we pointed to the fact that these distributions have sometimes been
used without optimal parameter estimation, goodness-of-fit assess-
ment, or SE calculation. In some cases, parametric procedures have
been used that are not well grounded in relevant statistical theory
[although the stream of research in mathematical statistics on the
problem dates from the 1940s and is now well developed (8)]. For
example, the lognormal distribution is sometimes fitted by using

Table 1. Microbial phyla detected among sequenced clones

Phylum Representation, no. of clones

1 Proteobacteria
Alpha 31
Beta 1
Gamma 139
Delta 65
Epsilon 11
Unclear affiliation 26

2 Bacteriodetes 133
3 Chlorobi 11
4 Fibrobacteres 2
5 Gemmatimonadetes 2
6 Planctomycetes 14
7 Verrucomicrobia 28
8 Acidobacteria 18
9 Cyanobacteria 26

10 Spirochaetes 2
11 Fusobacteria 1
12 Firmicutes 3
13 Actinobacteria 11
14 Chloroflexi 11
15 Aquificae 1
16 OP3 1
17 WS3 3
18 TM6 1
19 OD1 4
20 OP1 1
21 SR1 2
22 Unclear affiliation 8

Boldface type represents phyla with no cultivated representatives. Candi-
date phyla are from refs. 23 and 24. Group 22 consists of eight sequences of
unclear affiliation, which form at least three novel clades unrelated to known
or candidate phyla.

Fig. 1. Frequency distribution of OTUs in the clone library versus parametric models’ fitted values. The fitted and empirical values are extremely close,
illustrating quality fits.
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suboptimal parameter estimates and without specifying an under-
lying stochastic sampling model that generates the observed fre-
quency counts.

A notable parametric approach to estimate microbial richness is
based on the reassociation kinetics of environmental DNA, pio-
neered in ref. 26. Recently, a further development of this approach
produced a sensationally high estimate of almost 107 microbial
species in a small sample of soil (27). We note that although this
approach uses a very different (from rRNA surveys) kind of
biological data, some of the statistical analyses are shared, and the
requirement of statistical rigor stays the same. In particular, stan-
dard statistical practice requires that an estimate of a quantity such
as species richness be accompanied by a SE that is derived from the
underlying statistical model that generated the estimate, but the
basis of the SE in this case is an approximation of unknown

precision. (Analogous considerations hold for model choice and
goodness-of-fit assessment.) In fact, we have observed that subop-
timal (although not necessarily incorrect) methods can in some
cases produce estimates of a given sample’s diversity ranging from
a few species to millions of species. Often, such disparate estimates
have SEs that are orders of magnitude higher than the highest
estimate itself. Dramatic estimates have high visibility, but such
errors render the estimates unusable. Regrettably, statistically
correct error calculation has not yet become standard practice in
biodiversity research.

To advance the application of state-of-the-art statistical methods
to practical species richness estimation, greater two-way commu-
nication is needed between the statistical community and biological
scientists who require such methods. For example, there is a new,
third family of procedures based on nonparametric estimation of

Table 2. Microbial richness of the sample

OTU
boundary Statistic

Sample’s
richness
detected

Estimate of the total sample’s richness

Parametric model
Nonparametric

estimators

Inverse
Gaussian

Log
normal Pareto

2-mixed
exponential ACE ACE1

99% No. of OTU 459 15,247,678 4,011 1,627 14,715 2,078 2,714
SE �1010 1,578 NA 64,376 278 530

Asym. GOF 0.41 NA 0.00 0.56 NP NP
Naı̈ve GOF 0.64 0.32 0.00 0.45 NP NP

TP 6 6 6 6 NP NP
98% No. of OTU 405 31,905 2,803 2,752 2,889 1,470 2,179

SE 194,114 1,017 589 1,078 197 494
Asym. GOF 0.96 0.55 0.51 0.60 NP NP
Naı̈ve GOF 0.07 0.05 0.08 0.03 NP NP

TP 9 9 9 9 NP NP
97% No. of OTU 380 3,351 2,565 2,434 2,181 1,385 2,296

SE 2,282 964 542 606 198 592
Asym. GOF 0.63 0.55 0.52 0.29 NP NP
Naı̈ve GOF 0.67 0.37 0.47 0.40 NP NP

TP 8 12 12 10 NP NP
96% No. of OTU 351 1,628 1,259 1,333 1,343 1,158 1,947

SE 575 289 195 145 155 785
Asym. GOF 0.22 0.07 0.06 0.14 NP NP
Naı̈ve GOF 0.48 0.31 0.26 0.00 NP NP

TP 7 7 7 13 NP NP
95% No. of OTU 328 14,831 2,028 1,683 1,522 1,081 1,818

SE 6,517 798 348 317 142 416
Asym. GOF 0.92 0.60 0.38 0.25 NP NP
Naı̈ve GOF 0.11 0.06 0.02 0.10 NP NP

TP 12 12 10 12 NP NP
90% No. of OTU 233 934 755 779 715 835 1,983

SE 212 206 111 94 124 1,228
Asym. GOF 0.91 0.69 0.60 0.36 NP NP
Naı̈ve GOF 0.07 0.04 0.02 0.22 NP NP

TP 8 8 8 25 NP NP
80% No. of OTU 92 282 241 240 286 176 236

SE 96 98 71 65 28 59
Asym. GOF 0.18 0.11 0.05 0.47 NP NP
Naı̈ve GOF 0.19 0.11 0.03 0.03 NP NP

TP 10 10 25 26 NP NP
70% No. of OTU 16 31 29 25 164,823 26 33

SE 16 17 6 �109 9 17
Asym. GOF NA NA NA NA NP NP
Naı̈ve GOF 0.03 0.03 0.04 0.05 NP NP

TP 9 9 9 9 NP NP

Boldface values represent the best estimates. Asymp. GOF, asymptotically correct goodness-of-fit; NA, not available; NP, estimation
not possible.

120 � www.pnas.org�cgi�doi�10.1073�pnas.0507245102 Hong et al.



abundance distributions, that has not yet been generally applied (15,
21, 28). These procedures are based on the same statistical model
as we used here (the mixed Poisson), but the underlying species
abundance (mixture) distribution is specified nonparametrically
rather than parametrically. This approach has its own advantages
and disadvantages, but it will ultimately yield another plausible set
of analyses for comparison.

In this paper, we adopt an empirical approach of making no
assumptions about the nature of a parametric distribution un-
derlying microbial data. Instead, we systematically apply to our
16S rRNA dataset all of the models used to date, as well as two
more that are new to the field of biodiversity. We then choose
the one that fits the specific dataset the best, gives a reasonable
SE, and uses as much of the clone data as possible. It is important
to note that the choice of a ‘‘winner’’ is multidimensional, and in
many cases there is no single choice. Identifying the ‘‘winner’’
thus involves a certain degree of subjectivity. Luckily, we face the
dilemma of choice because we have too many well performing
models, not because they all perform equally poorly. Therefore,
we are truly looking for the best and not merely identifying the
lesser evil. Our guiding principle is to first consider the goodness-
of-fit, and if it is similarly good for more than one model, prefer
the one giving the lowest SE. (For goodness-of-fit, we look at not
only the �2 P values but also at the actual fitted values at lower
frequencies, especially frequency � 1). Following this logic, we
suggest that at the level of bacterial strains (99% rRNA gene
sequence similarity), our data can be best described by the
lognormal distribution, which estimates the number of such
strains in our sample at 4,011 � 1,578 (SE). At the level of species
(29), the Pareto model gives an overall better combination of the
goodness-of-fit and SE. This model is well known in statistics
(30), but it is used in biodiversity research here for the first time.
This model predicts that our sediment sample contained at a
minimum 2,434 � 542 (SE) bacterial species.

Bacterial genera, families�classes, and phyla can be difficult to
identify with a specific 16S sequence distance value, but as the
first approximation 5%, 10%, and 20% have been proposed and
used for the respective taxonomic groups above (24, 31, 32). At
the 5% and 10% divergence levels as OTU criteria, the 2-mixed
exponential model outperformed other parametric models used,
and estimated the microbial richness at 1,522 � 317 (95% cut-off
value) and 715 � 94 (90%). Interestingly, this parametric model
also is new to biodiversity research. We also noted good per-
formance of the inverse Gaussian model, especially at estimating
microbial richness at the phylum level and above (80% and 70%
sequence identity cut-off values; Table 2).

It is important to reemphasize that no single parametric model
was of universal applicability, and specifics of the dataset
dictated the nature of the model best describing the frequency
distribution therein. Indiscriminate application of a single model
to any dataset is likely to lead to erroneous results. We note that
some of our estimates, notably those for the total number of
bacterial species, are about an order of magnitude higher than
typical nonparametric estimates (4, 5). The likely explanation is
that the nonparametric procedures were not compared to other
possible competitors, and the resulting values were underesti-
mates. However, our estimate of microbial species richness is
over an order of magnitude lower than the few parametric ones
obtained earlier (6), but the latter came with no SEs, and this
renders comparisons futile. We therefore argue that, on a per
sample basis, the estimates of microbial richness provided here

are the first statistically sound estimates of microbial diversity in
general, and in marine sediments in particular.

Although a systematic evaluation of different parametric models
seems to be necessary to correctly estimate the sample’s microbial
richness at the levels of strains, species, and genera, this require-
ment appears relaxed at the level of larger bacterial clades. It was
interesting to see how the decrease in the cut-off values defining
OTUs from 99% to 70%, and a corresponding increase in estimated
sample coverage of the total diversity from �10% to 50%, led to
progressively greater similarity in the estimates made by different
methods. At what appears to be the phylum level (80% sequence
identity), four parametric distributions (lognormal, Pareto, inverse
Gaussian, and 2-mixed exponential) and both ACE and ACE1
estimators made essentially the same predictions (Table 2). This
result shows that a clone library of about 500 clones captures
enough of microbial diversity at the higher end of taxonomic
hierarchy for the differences between individual models to become
insignificant, and consequently many different approaches con-
verge to predict the same microbial richness. If these estimates are
correct, then even for OTUs defined as clusters with 70–80%
sequence identity, our library did not reach saturation, and as much
as 50% and more of the larger clades evaded our sequencing efforts.
Because we detected representatives of approximately half of all of
the bacterial phyla recognized or proposed to date (23, 24), it seems
possible that the library might have in fact contained representa-
tives of essentially all of the known phyla, albeit some at such low
abundances that they went undetected. It would be particularly
interesting to apply our approach to data from the existing litera-
ture and to compare the estimates of microbial richness.

We recognize that there are factors outside statistics that also
limit our ability to fully estimate microbial richness. The holy
grail of microbial biodiversity studies is to know microbial
richness in nature, yet all of the available estimates, including
ours, are those of rRNA genes in the clone library, and not the
original sample. Obviously, before the latter can be achieved,
biases associated with DNA extraction, PCR, and cloning have
to be minimized. Until such time, the estimates of microbial
richness such as provided here remain very conservative.

In conclusion, we developed a synthetic statistical approach to
evaluate the amount of biological species on the basis of a small
sample of all of the species. We also developed an algorithm for
applying this approach to empirical frequency data. As a result,
we estimate that between 2,000 and 3,000 bacterial species are
present in a single sample of marine sediments. This number is
conservative because of as-yet-unresolved biases of the rRNA
approach.
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