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A human gut microbial gene catalogue
established by metagenomic sequencing
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Chaysavanh Manichanh5, Trine Nielsen4, Nicolas Pons6, Florence Levenez6, Takuji Yamada2, Daniel R. Mende2,
Junhua Li1,7, Junming Xu1, Shaochuan Li1, Dongfang Li1,8, Jianjun Cao1, BoWang1, Huiqing Liang1, Huisong Zheng1,
Yinlong Xie1,7, Julien Tap6, Patricia Lepage6, Marcelo Bertalan9, Jean-Michel Batto6, Torben Hansen4, Denis Le
Paslier10, Allan Linneberg11, H. Bjørn Nielsen9, Eric Pelletier10, Pierre Renault6, Thomas Sicheritz-Ponten9,
Keith Turner12, Hongmei Zhu1, Chang Yu1, Shengting Li1, Min Jian1, Yan Zhou1, Yingrui Li1, Xiuqing Zhang1,
Songgang Li1, Nan Qin1, Huanming Yang1, Jian Wang1, Søren Brunak9, Joel Doré6, Francisco Guarner5,
Karsten Kristiansen13, Oluf Pedersen4,14, Julian Parkhill12, JeanWeissenbach10, MetaHIT Consortium{, Peer Bork2,
S. Dusko Ehrlich6 & Jun Wang1,13

To understand the impact of gut microbes on human health and well-being it is crucial to assess their genetic potential. Here
we describe the Illumina-based metagenomic sequencing, assembly and characterization of 3.3 million non-redundant
microbial genes, derived from 576.7 gigabases of sequence, from faecal samples of 124 European individuals. The gene set,
,150 times larger than the human gene complement, contains an overwhelming majority of the prevalent (more frequent)
microbial genes of the cohort and probably includes a large proportion of the prevalent human intestinalmicrobial genes. The
genes are largely shared among individuals of the cohort. Over 99% of the genes are bacterial, indicating that the entire
cohort harbours between 1,000 and 1,150 prevalent bacterial species and each individual at least 160 such species, which are
also largely shared. We define and describe the minimal gut metagenome and the minimal gut bacterial genome in terms of
functions present in all individuals and most bacteria, respectively.

It has been estimated that the microbes in our bodies collectively
make up to 100 trillion cells, tenfold the number of human cells,
and suggested that they encode 100-fold more unique genes than
our own genome1. The majority of microbes reside in the gut, have
a profound influence on human physiology and nutrition, and are
crucial for human life2,3. Furthermore, the gutmicrobes contribute to
energy harvest from food, and changes of gut microbiome may be
associated with bowel diseases or obesity4–8.

To understand and exploit the impact of the gut microbes on
human health and well-being it is necessary to decipher the content,
diversity and functioning of the microbial gut community. 16S ribo-
somal RNA gene (rRNA) sequence-basedmethods9 revealed that two
bacterial divisions, the Bacteroidetes and the Firmicutes, constitute
over 90% of the known phylogenetic categories and dominate the
distal gut microbiota10. Studies also showed substantial diversity of
the gutmicrobiome between healthy individuals4,8,10,11. Although this
difference is especially marked among infants12, later in life the gut
microbiome converges to more similar phyla.

Metagenomic sequencing represents a powerful alternative to
rRNA sequencing for analysing complexmicrobial communities13–15.
Applied to the human gut, such studies have already generated some
3 gigabases (Gb) of microbial sequence from faecal samples of 33

individuals from the United States or Japan8,16,17. To get a broader
overview of the human gut microbial genes we used the Illumina
Genome Analyser (GA) technology to carry out deep sequencing of
total DNA from faecal samples of 124 European adults.We generated
576.7 Gb of sequence, almost 200 times more than in all previous
studies, assembled it into contigs and predicted 3.3 million unique
open reading frames (ORFs). This gene catalogue contains virtually
all of the prevalent gut microbial genes in our cohort, provides a
broad view of the functions important for bacterial life in the gut
and indicates that many bacterial species are shared by different
individuals. Our results also show that short-read metagenomic
sequencing can be used for global characterization of the genetic
potential of ecologically complex environments.

Metagenomic sequencing of gut microbiomes

As part of the MetaHIT (Metagenomics of the Human Intestinal
Tract) project, we collected faecal specimens from 124 healthy, over-
weight and obese individual human adults, as well as inflammatory
bowel disease (IBD) patients, fromDenmark and Spain (Supplemen-
tary Table 1). Total DNA was extracted from the faecal specimens18

and an average of 4.5 Gb (ranging between 2 and 7.3Gb) of sequence
was generated for each sample, allowing us to capture most of the
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novelty (see Methods and Supplementary Table 2). In total, we
obtained 576.7 Gb of sequence (Supplementary Table 3).

Wanting to generate an extensive catalogue ofmicrobial genes from
the human gut, we first assembled the short Illumina reads into longer
contigs, which could then be analysed and annotated by standard
methods.Using SOAPdenovo19, a de Bruijn graph-based tool specially
designed for assembling very short reads, we performed de novo
assembly for all of the Illumina GA sequence data. Because a high
diversity between individuals is expected8,16,17, we first assembled each
sample independently (Supplementary Fig. 3). As much as 42.7% of
the Illumina GA reads was assembled into a total of 6.58 million
contigs of a length .500 bp, giving a total contig length of 10.3Gb,
with an N50 length of 2.2 kb (Supplementary Fig. 4) and the range of
12.3 to 237.6Mb (Supplementary Table 4). Almost 35%of reads from
any one sample could be mapped to contigs from other samples,
indicating the existence of a common sequence core.

To assess the quality of the IlluminaGA-based assemblywemapped
the contigs of samplesMH0006 andMH0012 to the Sanger reads from
the same samples (Supplementary Table 2). A total of 98.7% of the
contigs that map to at least one Sanger read were collinear over 99.6%
of the mapped regions. This is comparable to the contigs that were
generated by 454 sequencing for one of the two samples (MH0006) as
a control, of which 97.9% were collinear over 99.5% of the mapped
regions.We estimate assembly errors to be 14.2 and 20.7 permegabase
(Mb) of Illumina- and 454-based contigs, respectively (see Methods
and Supplementary Fig. 5), indicating that the short- and long-read-
based assemblies have comparable accuracies.

To complete the contig set we pooled the unassembled reads from
all 124 samples, and repeated the de novo assembly process. About 0.4
million additional contigs were thus generated, having a length of
370Mb and an N50 length of 939 bp. The total length of our final
contig set was thus 10.7 Gb. Some 80% of the 576.7Gb of Illumina
GA sequence could be aligned to the contigs at a threshold of 90%
identity, allowing for accommodation of sequencing errors and
strain variability in the gut (Fig. 1), almost twice the 42.7% of
sequence that was assembled into contigs by SOAPdenovo, because
assembly uses more stringent criteria. This indicates that a vast
majority of the Illumina sequence is represented by our contigs.

To compare the representation of the human gut microbiome in
our contigs with that from previous work, we aligned them to the
reads from the two largest published gut metagenome studies
(1.83Gb of Roche/454 sequencing reads from 18 US adults8, and
0.79Gb of Sanger reads from 13 Japanese adults and infants17), using
the 90% identity threshold. A total of 70.1% and 85.9% of the reads
from the Japanese and US samples, respectively, could be aligned to

our contigs (Fig. 1), showing that the contigs include a high fraction
of sequences from previous studies. In contrast, 85.7% and 69.5% of
our contigs were not covered by the reads from the Japanese and US
samples, respectively, highlighting the novelty we captured.

Only 31.0–48.8% of the reads from the two previous studies and
the present study could be aligned to 194 public human gut bacterial
genomes (Supplementary Table 5), and 7.6–21.2% to the bacterial
genomes deposited in GenBank (Fig. 1). This indicates that the
reference gene set obtained by sequencing genomes of isolated bac-
terial strains is still of a limited scale.

A gene catalogue of the human gut microbiome

To establish a non-redundant human gut microbiome gene set we
first used the MetaGene20 program to predict ORFs in our contigs
and found 14,048,045 ORFs longer than 100 bp (Supplementary
Table 6). They occupied 86.7% of the contigs, comparable to the
value found for fully sequenced genomes (,86%). Two-thirds of
theORFs appeared incomplete, possibly due to the size of our contigs
(N50 of 2.2 kb). We next removed the redundant ORFs, by pair-wise
comparison, using a very stringent criterion of 95% identity over
90% of the shorter ORF length, which can fuse orthologues but
avoids inflation of the data set due to possible sequencing errors
(see Methods). Yet, the final non-redundant gene set contained as
many as 3,299,822 ORFs with an average length of 704 bp (Sup-
plementary Table 7).

We term the genes of the non-redundant set ‘prevalent genes’, as
they are encoded on contigs assembled from themost abundant reads
(see Methods). The minimal relative abundance of the prevalent
genes was ,63 1027, as estimated from the minimum sequence
coverage of the unique genes (close to 3), and the total Illumina
sequence length generated for each individual (on average, 4.5 Gb),
assuming the average gene length of 0.85 kb (that is, 33 0.853 103/
4.53 109).

We mapped the 3.3 million gut ORFs to the 319,812 genes (target
genes) of the 89 frequent reference microbial genomes in the human
gut. At a 90% identity threshold, 80% of the target genes had at least
80% of their length covered by a single gut ORF (Fig. 2b). This
indicates that the gene set includes most of the known human gut
bacterial genes.

We examined the number of prevalent genes identified across all
individuals as a function of the extent of sequencing, demanding at
least two supporting reads for a gene call (Fig. 2a). The incidence-
based coverage richness estimator (ICE), determined at 100 individuals
(the highest number the EstimateS21 program could accommodate),
indicates that our catalogue captures 85.3% of the prevalent genes.
Although this is probably an underestimate, it nevertheless indicates
that the catalogue contains an overwhelmingmajority of the prevalent
genes of the cohort.

Each individual carried 536,1126 12,167 (mean6 s.e.m.) prevalent
genes (Supplementary Fig. 6b), indicating that most of the 3.3 million
gene pool must be shared. However, most of the prevalent genes were
found in only a few individuals: 2,375,655 were present in less than
20%, whereas 294,110 were found in at least 50% of individuals (we
term these ‘common’ genes). These values depend on the sampling
depth; sequencing of MH0006 and MH0012 revealed more of the
catalogue genes, present at a low abundance (Supplementary Fig. 7).
Nevertheless, even at our routine sampling depth, each individual
harboured 204,0566 3,603 (mean6 s.e.m.) common genes, indi-
cating that about 38% of an individual’s total gene pool is shared.
Interestingly, the IBDpatients harboured, on average, 25% fewer genes
than the individuals not suffering from IBD (Supplementary Fig. 8),
consistent with the observation that the former have lower bacterial
diversity than the latter22.

Common bacterial core

Deep metagenomic sequencing provides the opportunity to explore
the existence of a common set of microbial species (common core) in
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Figure 1 | Coverage of human gut microbiome. The three human microbial
sequencing read sets—Illumina GA reads generated from 124 individuals in
this study (black; n5 124), Roche/454 reads from 18 human twins and their
mothers (grey; n5 18) and Sanger reads from 13 Japanese individuals
(white; n5 13)—were aligned to each of the reference sequence sets. Mean
values6 s.e.m. are plotted.
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the cohort. For this purpose, we used a non-redundant set of 650
sequenced bacterial and archaeal genomes (seeMethods).We aligned
the Illumina GA reads of each human gut microbial sample onto the
genome set, using a 90% identity threshold, and determined the
proportion of the genomes covered by the reads that aligned onto
only a single position in the set. At a 1% coverage, which for a typical
gut bacterial genome corresponds to an average length of about
40 kb, some 25-fold more than that of the 16S gene generally used
for species identification, we detected 18 species in all individuals, 57
in$90% and 75 in$50%of individuals (Supplementary Table 8). At
10% coverage, requiring,10-fold higher abundance in a sample, we
still found 13 of the above species in$90% of individuals and 35
in$50%.

When the cumulated sequence length increased from 3.96Gb to
8.74Gb and from 4.41Gb to 11.6Gb, for samples MH0006 and
MH0012, respectively, the number of strains common to the two
at the 1% coverage threshold increased by 25%, from 135 to 169.
This indicates the existence of a significantly larger common core
than the one we could observe at the sequence depth routinely used
for each individual.

The variability of abundance of microbial species in individuals
can greatly affect identification of the common core. To visualize
this variability, we compared the number of sequencing reads aligned
to different genomes across the individuals of our cohort. Even for
the most common 57 species present in$90% of individuals with
genome coverage.1% (Supplementary Table 8), the inter-individual
variability was between 12- and 2,187-fold (Fig. 3). As expected10,23,
Bacteroidetes and Firmicutes had the highest abundance.

A complex pattern of species relatedness, characterized by clusters
at the genus and family levels, emerges from the analysis of the net-
work based on the pair-wise Pearson correlation coefficients of 155
species present in at least one individual at$1% coverage
(Supplementary Fig. 9). Prominent clusters include some of themost
abundant gut species, such as members of the Bacteroidetes and
Dorea/Eubacterium/Ruminococcus groups and also bifidobacteria,
Proteobacteria and streptococci/lactobacilli groups. These observa-
tions indicate that similar constellations of bacteriamay be present in
different individuals of our cohort, for reasons that remain to be
established.

The above result indicates that the Illumina-based bacterial pro-
filing should reveal differences between the healthy individuals and
patients. To test this hypothesis we compared the IBD patients and
healthy controls (Supplementary Table 1), as it was previously
reported that the two have differentmicrobiota22. The principal com-
ponent analysis, based on the same 155 species, clearly separates
patients from healthy individuals and the ulcerative colitis from
the Crohn’s disease patients (Fig. 4), confirming our hypothesis.

Functions encoded by the prevalent gene set

We classified the predicted genes by aligning them to the integrated
NCBI-NRdatabase of non-redundant protein sequences, the genes in
the KEGG (Kyoto Encyclopedia of Genes and Genomes)24 pathways,
and COG (Clusters of Orthologous Groups)25 and eggNOG26 data-
bases. There were 77.1% genes classified into phylotypes, 57.5% to
eggNOG clusters, 47.0% to KEGG orthology and 18.7% genes
assigned to KEGG pathways, respectively (Supplementary Table 9).

Relative abundance (log10)
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Figure 3 | Relative abundance of 57 frequent microbial genomes among
individuals of the cohort. See Fig. 2c for definition of box and whisker plot.
See Methods for computation.
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Figure 2 | Predicted ORFs in the human gut microbiome. a, Number of
unique genes as a function of the extent of sequencing. The gene accumulation
curve corresponds to the Sobs (Mao Tau) values (number of observed genes),
calculated using EstimateS21 (version 8.2.0) on randomly chosen 100 samples
(due to memory limitation). b, Coverage of genes from 89 frequent gut
microbial species (Supplementary Table 12). c, Number of functions captured
by number of samples investigated, based on known (well characterized)
orthologous groups (OGs; bottom), known plus unknown orthologous
groups (including, for example, putative, predicted, conserved hypothetical
functions; middle) and orthologous groups plus novel gene families (.20
proteins) recovered from the metagenome (top). Boxes denote the
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Almost all (99.96%) of the phylogenetically assigned genes belonged
to the Bacteria and Archaea, reflecting their predominance in the gut.
Genes that were not mapped to orthologous groups were clustered
into gene families (see Methods). To investigate the functional con-
tent of the prevalent gene set we computed the total number of
orthologous groups and/or gene families present in any combination
of n individuals (with n5 2–124; see Fig. 2c). This rarefaction ana-
lysis shows that the ‘known’ functions (annotated in eggNOG or
KEGG) quickly saturate (a value of 5,569 groups was observed): when
sampling any subset of 50 individuals, most have been detected.
However, three-quarters of the prevalent gut functionalities consists
of uncharacterized orthologous groups and/or completely novel gene
families (Fig. 2c).When including these groups, the rarefaction curve
only starts to plateau at the very end, at a much higher level (19,338
groups were detected), confirming that the extensive sampling of a
large number of individuals was necessary to capture this considerable
amount of novel/unknown functionality.

Bacterial functions important for life in the gut

The extensive non-redundant catalogue of the bacterial genes from
the human intestinal tract provides an opportunity to identify bac-
terial functions important for life in this environment. There are
functions necessary for a bacterium to thrive in a gut context (that
is, the ‘minimal gut genome’) and those involved in the homeostasis
of the whole ecosystem, encoded across many species (the ‘minimal
gut metagenome’). The first set of functions is expected to be present
in most or all gut bacterial species; the second set in most or all
individuals’ gut samples.

To identify the functions encoded by the minimal gut genome we
use the fact that they should be present in most or all gut bacterial
species and therefore appear in the gene catalogue at a frequency
above that of the functions present in only some of the gut bacterial
species. The relative frequency of different functions can be deduced
from the number of genes recruited to different eggNOG clusters,
after normalization for gene length and copy number (Supplemen-
tary Fig. 10a, b). We ranked all the clusters by gene frequencies and
determined the range that included the clusters specifying well-
known essential bacterial functions, such as those determined experi-
mentally for a well-studied firmicute, Bacillus subtilis27, hypothe-
sizing that additional clusters in this range are equally important.
As expected, the range that included most of B. subtilis essential
clusters (86%) was at the very top of the ranking order (Fig. 5).
Some 76% of the clusters with essential genes of Escherichia coli28

were within this range, confirming the validity of our approach.
This suggests that 1,244metagenomic clusters foundwithin the range
(Supplementary Table 10; termed ‘range clusters’ hereafter) specify
functions important for life in the gut.

We found two types of functions among the range clusters: those
required in all bacteria (housekeeping) and those potentially specific
for the gut. Among many examples of the first category are the
functions that are part of main metabolic pathways (for example,
central carbon metabolism, amino acid synthesis), and important
protein complexes (RNA andDNApolymerase, ATP synthase, general
secretory apparatus). Not surprisingly, projection of the range clusters
on the KEGG metabolic pathways gives a highly integrated picture of
the global gut cell metabolism (Fig. 6a).

The putative gut-specific functions include those involved in adhe-
sion to the host proteins (collagen, fibrinogen, fibronectin) or in
harvesting sugars of the globoseries glycolipids, which are carried
on blood and epithelial cells. Furthermore, 15% of range clusters
encode functions that are present in,10% of the eggNOG genomes
(see Supplementary Fig. 11) and are largely (74.3%) not defined
(Fig. 6b). Detailed studies of these should lead to a deeper compre-
hension of bacterial life in the gut.

To identify the functions encoded by theminimal gut metagenome,
we computed the orthologous groups that are shared by individuals of
our cohort. Thisminimal set, of 6,313 functions, ismuch larger than the
one estimated in a previous study8. There are only 2,069 functionally
annotated orthologous groups, showing that they gravely underesti-
mate the true size of the common functional complement among indi-
viduals (Fig. 6c). Theminimal gutmetagenome includes a considerable
fraction of functions (,45%) that are present in ,10% of the
sequenced bacterial genomes (Fig. 6c, inset). These otherwise rare func-
tionalities that are found in eachof the124 individualsmaybenecessary
for the gut ecosystem. Eighty per cent of these orthologous groups
contain genes with at best poorly characterized function, underscoring
our limited knowledge of gut functioning.

Of the known fraction, about 5% codes for (pro)phage-related
proteins, implying a universal presence and possible important eco-
logical role of bacteriophages in gut homeostasis. The most striking
secondary metabolism that seems crucial for the minimal metage-
nome relates, not unexpectedly, to biodegradation of complex sugars
and glycans harvested from the host diet and/or intestinal lining.
Examples include degradation and uptake pathways for pectin
(and its monomer, rhamnose) and sorbitol, sugars which are omni-
present in fruits and vegetables, but which are not or poorly absorbed
by humans. As some gutmicroorganisms were found to degrade both
of them29,30, this capacity seems to be selected for by the gut ecosystem
as a non-competitive source of energy. Besides these, capacity to
ferment, for example, mannose, fructose, cellulose and sucrose is also
part of the minimal metagenome. Together, these emphasize the
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strong dependence of the gut ecosystem on complex sugar degrada-
tion for its functioning.

Functional complementarities of the genome and metagenome

Detailed analysis of the complementarities between the gut metage-
nome and the human genome is beyond the scope of the present work.
To provide an overview,we considered two factors: conservation of the
functions in the minimal metagenome and presence/absence of func-
tions in one or the other (Supplementary Table 11). Gut bacteria use
mostly fermentation to generate energy, converting sugars, in part, to
short-chain fatty acid, that areusedby thehost as energy source.Acetate
is important for muscle, heart and brain cells31, propionate is used in
host hepatic neoglucogenic processes, whereas, in addition, butyrate is
important for enterocytes32. Beyond short-chain fatty acid, a number of

amino acids are indispensable to humans33 and can be provided by
bacteria34. Similarly, bacteria can contribute certain vitamins3 (for
example, biotin, phylloquinone) to the host. All of the steps of biosyn-
thesis of these molecules are encoded by the minimal metagenome.

Gut bacteria seem to be able to degrade numerous xenobiotics,
including non-modified andhalogenated aromatic compounds (Sup-
plementary Table 11), even if the steps of most pathways are not part
of theminimalmetagenome and are found in a fraction of individuals
only. A particularly interesting example is that of benzoate, which is a
common food supplement, known as E211. Its degradation by the
coenzyme-A ligation pathway, encoded in the minimal metagenome,
leads to pimeloyl-coenzyme-A, which is a precursor of biotin, indi-
cating that this food supplement can have a potentially beneficial role
for human health.
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Figure 6 | Characterization of the minimal gut genome and metagenome.
a, Projection of the minimal gut genome on the KEGG pathways using the
iPath tool38. b, Functional composition of the minimal gut genome and
metagenome. Rare and frequent refer to the presence in sequenced eggNOG
genomes. c, Estimation of the minimal gut metagenome size. Known
orthologous groups (red), known plus unknown orthologous groups (blue)
and orthologous groups plus novel gene families (.20 proteins; grey) are
shown (see Fig. 2c for definition of box and whisker plot). The inset shows

composition of the gut minimal microbiome. Large circle: classification in
the minimal metagenome according to orthologous group occurrence in
STRING739 bacterial genomes. Common (25%), uncommon (35%) and rare
(45%) refer to functions that are present in .50%, ,50% but .10%, and
,10% of STRING bacteria genomes, respectively. Small circle: composition
of the rare orthologous groups. Unknown (80%) have no annotation or are
poorly characterized, whereas known bacterial (19%) and phage-related
(1%) orthologous groups have functional description.
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Discussion

We have used extensive Illumina GA short-read-based sequencing of
total faecal DNA from a cohort of 124 individuals of European
(Nordic and Mediterranean) origin to establish a catalogue of non-
redundant human intestinal microbial genes. The catalogue contains
3.3 million microbial genes, 150-fold more than the human gene
complement, and includes an overwhelming majority (.86%) of
prevalent genes harboured by our cohort. The catalogue probably
contains a largemajority of prevalent intestinalmicrobial genes in the
human population, for the following reasons: (1) over 70% of the
metagenomic reads from three previous studies, including American
and Japanese individuals8,16,17, can be mapped on our contigs; (2)
about 80% of the microbial genes from 89 frequent gut reference
genomes are present in our set. This result represents a proof of
principle that short-read sequencing can be used to characterize
complex microbiomes.

The full bacterial gene complement of each individual was not
sampled in our work. Nevertheless, we have detected some 536,000
prevalent unique genes in each, out of the total of 3.3 million carried
by our cohort. Inevitably, the individuals largely share the genes of
the common pool. At the present depth of sequencing, we found that
almost 40% of the genes from each individual are shared with at least
half of the individuals of the cohort. Future studies of world-wide
span, envisaged within the International Human Microbiome
Consortium, will complete, as necessary, our gene catalogue and
establish boundaries to the proportion of shared genes.

Essentially all (99.1%) of the genes of our catalogue are of bacterial
origin, the remainder beingmostly archaeal, with only 0.1%of eukar-
yotic and viral origins. The gene catalogue is therefore equivalent to
that of some 1,000 bacterial species with an average-sized genome,
encoding about 3,364 non-redundant genes. We estimate that no
more than 15% of prevalent genes of our cohort may be missing
from the catalogue, and suggest that the cohort harbours no more
than,1,150 bacterial species abundant enough to be detected by our
sampling. Given the large overlap between microbial sequences in
this and previous studies we suggest that the number of abundant
intestinal bacterial species may be not much higher than that
observed in our cohort. Each individual of our cohort harbours at
least 160 such bacterial species, as estimated by the average prevalent
gene number, and many must thus be shared.

We assigned about 12% of the reference set genes (404,000) to the
194 sequenced intestinal bacterial genomes, and can thus associate
them with bacterial species. Sequencing of at least 1,000 human-
associated bacterial genomes is foreseen within the International
Human Microbiome Consortium, via the Human Microbiome
Project and MetaHIT. This is commensurate with the number of
dominant species in our cohort and expectedmore broadly in human
gut, and should enable a muchmore extensive gene to species assign-
ment. Nevertheless, we used the presently available sequenced
genomes to explore further the concept of largely shared species
among our cohort and identified 75 species common to .50% of
individuals and 57 species common to .90%. These numbers are
likely to increase with the number of sequenced reference strains and
a deeper sampling. Indeed, a 2–3-fold increase in sequencing depth
raised by 25% the number of species that we could detect as shared
between two individuals. A large number of shared species supports
the view that the prevalent human microbiome is of a finite and not
overly large size.

How can this view be reconciled with that of a considerable inter-
personal diversity of innumerable bacterial species in the gut, arising
from most previous studies using the 16S RNA marker gene4,8,10,11?
Possibly the depth of sampling of these studies was insufficient to
reveal common species when present at low abundance, and empha-
sized the difference in the composition of a relatively few dominant
species. We found a very high variability of abundance (12- to 2,200-
fold) for the 57 most common species across the individuals of our
cohort. Nevertheless, a recent 16S rRNA-based study concluded that

a common bacterial species ‘core’, shared among at least 50% of
individuals under study, exists35.

Detailed comparisons of bacterial genes across the individuals of
our cohort will be carried out in the future, within the context of
the ongoing MetaHIT clinical studies of which they are part.
Nevertheless, clustering of the genes in families allowed us to capture
a virtually full functional potential of the prevalent gene set and
revealed a considerable novelty, extending the functional categories
by some 30% in regard to previous work8. Similarly, this analysis has
revealed a functional core, conserved in each individual of the cohort,
which reflects the full minimal human gut metagenome, encoded
acrossmany species and probably required for the proper functioning
of the gut ecosystem. The size of this minimal metagenome exceeds
several-fold that of the core metagenome reported previously8. It
includes functions known to be important to the host–bacterial inter-
action, such as degradation of complex polysaccharides, synthesis of
short-chain fatty acids, indispensable amino acids and vitamins.
Finally, we also identified functions that we attribute to a minimal
gut bacterial genome, likely to be required by any bacterium to thrive
in this ecosystem. Besides general housekeeping functions, the
minimal genome encompassesmany genes of unknown function, rare
in sequenced genomes and possibly specifically required in the gut.

Beyond providing the global view of the human gut microbiome,
the extensive gene cataloguewe have established enables future studies
of association of the microbial genes with human phenotypes and,
even more broadly, human living habits, taking into account the
environment, including diet, from birth to old age.We anticipate that
these studies will lead to a much more complete understanding of
human biology than the one we presently have.

METHODS SUMMARY
Human faecal samples were collected, frozen immediately andDNAwas purified
by standard methods22. For all 124 individuals, paired-end libraries were con-
structed with different clone insert sizes and subjected to Illumina GA sequen-
cing. All reads were assembled using SOAPdenovo19, with specific parameter
‘2M 3’ for metagenomics data. MetaGene was used for gene prediction. A
non-redundant gene set was constructed by pair-wise comparison of all genes,
using BLAT36 under the criteria of identity .95% and overlap .90%. Gene
taxonomic assignments were made on the basis of BLASTP37 search (e-value
,13 1025) of the NCBI-NR database and 126 known gut bacteria genomes.
Gene functional annotations were made by BLASTP search (e-value,13 1025)
with eggNOG and KEGG (v48.2) databases. The total and shared number of
orthologous groups and/or gene families were computed using a random com-
bination of n individuals (with n5 2 to 124, 100 replicates per bin).

Full Methods and any associated references are available in the online version of
the paper at www.nature.com/nature.
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METHODS
Human faecal sample collection. Danish individuals were from the Inter-99
cohort40, varying in phenotypes according to BMI and status towards obesity/
diabetes, whereas Spanish individuals were either healthy controls or patients
with chronic inflammatory bowel diseases (Crohn’s disease or ulcerative colitis)
in clinical remission.
Patients and healthy controls were asked to provide a frozen stool sample.

Fresh stool samples were obtained at home, and samples were immediately
frozen by storing them in their home freezer. Frozen samples were delivered
to the Hospital using insulating polystyrene foam containers, and then they were
stored at 280 uC until analysis.
DNA extraction.A frozen aliquot (200mg) of each faecal sample was suspended
in 250ml of guanidine thiocyanate, 0.1M Tris (pH 7.5) and 40ml of 10%
N-lauroyl sarcosine. Then, DNA extraction was conducted as previously
described22. The DNA concentration and its molecular size were estimated by
nanodrop (Thermo Scientific) and agarose gel electrophoresis.
DNA library construction and sequencing. DNA library preparation followed
the manufacturer’s instruction (Illumina). We used the same workflow as
described elsewhere to perform cluster generation, template hybridization, iso-
thermal amplification, linearization, blocking and denaturization and hybridi-
zation of the sequencing primers. The base-calling pipeline (version
IlluminaPipeline-0.3) was used to process the raw fluorescent images and call
sequences.
We constructed one library (clone insert size 200 bp) for each of the first 15

samples, and two libraries with different clone insert sizes (135 bp and 400bp) for
each of the remaining 109 samples for validation of experimental reproducibility.
To estimate the optimal return between the generation of novel sequence and

sequencing depth, we aligned the Illumina GA reads from samples MH0006 and
MH0012 onto 468,335 Sanger reads totalling to 311.7Mb generated from the
same two samples (156.9 and 154.7Mb, respectively, Supplementary Table 2),
using the Short Oligonucleotide Alignment Program (SOAP)41 and a match
requirement of 95% sequence identity. With about 4Gb of Illumina sequence,
94% and 89% of the Sanger reads (forMH0006 andMH0012, respectively) were
covered. Further extensive sequencing, to 12.6 and 16.6Gb for MH0006 and
MH0012, respectively, brought only a moderate increase of coverage to about
95% (Supplementary Fig. 1).More than 90%of the Sanger reads were covered by
the Illumina sequences to a very high and uniform level (Supplementary Fig. 2),
indicating that there is little or no bias in the Illumina GA sequence. As expected,
a large proportion of Illumina sequences (57% and 74% for M0006 and M0012,
respectively) was novel and could not be mapped onto the Sanger reads. This
fraction was similar at the 4 and 12–16Gb sequencing levels, confirming that
most of the novelty was captured already at 4Gb.
We generated 35.4–97.6 million reads for the remaining 122 samples, with an

average of 62.5 million reads. Sequencing read length of the first batch of 15
samples was 44 bp and the second batch was 75 bp.
Public data used.The sequenced bacteria genomes (totally 806 genomes) deposited
inGenBankweredownloaded fromNCBIdatabase (http://www.ncbi.nlm.nih.gov/)
on 10 January 2009. The known human gut bacteria genome sequences were down-
loaded from HMP database (http://www.hmpdacc-resources.org/cgi-bin/hmp_
catalog/main.cgi), GenBank (67 genomes), Washington University in St Louis (85
genomes, version April 2009, http://genome.wustl.edu/pub/organism/Microbes/
Human_Gut_Microbiome/), and sequenced by theMetaHIT project (17 genomes,
version September 2009, http://www.sanger.ac.uk/pathogens/metahit/). The other
gutmetagenomedata used in this project include: (1) humangutmetagenomic data
sequenced from US individuals8, which was downloaded from NCBI with the
accession SRA002775; (2) human gut metagenomic data from Japanese indivi-
duals17, which was downloaded from P. Bork’s group at EMBL (http://www.
bork.embl.de). The integrated NR database we constructed in this study included
NCBI-NR database (version April 2009) and all genes from the known human gut
bacteria genomes.
Illumina GA short reads de novo assembly. High-quality short reads of each
DNA sample were assembled by the SOAPdenovo assembler19. In brief, we first
filtered the low abundant sequences from the assembly according to 17-mer fre-
quencies. The 17-merswithdepth less than5were screened in front of assembly, for
these low-frequency sequences were very unlikely to be assembled, whereas remov-
ing them would significantly reduce memory requirement and make assembly
feasible in an ordinary supercomputer (512GB memory in our institute).
Then the sequences were processed one by one and the de Bruijn graph data

format was used to store the overlap information among the sequences. The
overlap paths supported by a single read were unreliable and removed. Short
low-depth tips and bubbles that were caused by sequencing errors or genetic
variations between microbial strains were trimmed and merged, respectively.
Read paths were used to solve the tiny repeats.

Finally, we broke the connections at repeat boundaries, and outputted the
continuous sequences with unambiguous connections as contigs. The metage-
nomic specialmodel was chosen, and parameters ‘2K 21’ and ‘2K 23’ were used
for 44 bp and 75 bp reads, respectively, to indicate the minimal sequence overlap
required.
After de novo assembly for each sample independently, we merged all the

unassembled reads together and performed assembly for them, as to maximize
the usage of data and assemble themicrobial genomes that have low frequency in
each read set, but have sufficient sequence depth for assembly by putting the data
of all samples together.
Validating Illumina contigs using Sanger reads. We used BLASTN (WU-
BLAST 2.0) to map Sanger reads from samples MH0006 and MH0012
(156.9Mb and 154.7Mb, respectively) to Illumina contigs (single best hit longer
than 75 bp and over 95% identity) from the same samples. Each alignment was
scanned for breakage of collinearity where both sequences have at least 50 bases
left unaligned at one end of the alignment. Each such breakage was considered an
assembly error in the Illumina contig at the location where collinearity breaks.
Errors within 30 bp from each other weremerged. An error was discarded if there
exists a Sanger read that agrees with the contig structure for 60 bp on both sides
of the error. For comparison, we repeated this on a Newbler2 assembly of 454
Titanium reads fromMH0006 (550Mb reads). Supplementary Fig. 5a shows the
number of errors per Mb of assembled Illumina/454 contigs. We estimate 14.12
errors per Mb of contigs for the Illumina assembly, which is comparable to that
of the 454 assembly (20.73 per Mb). 98.7% of Illumina contigs that map at least
one Sanger read were collinear over 99.55% of the mapped regions, which is
comparable to 97.86% of such 454 contigs being collinear over 99.48% of the
mapped regions.
Evaluation of human gut microbiome coverage. The Illumina GA reads were
aligned against the assembled contigs and known bacteria genomes using
SOAP41 by allowing at most two mismatches in the first 35-bp region and
90% identity over the read sequence. The Roche/454 and Sanger sequencing
reads were aligned against the same reference using BLASTN with 13 1028,
over 100 bp alignment length andminimal 90% identity cutoff. Twomismatches
were allowed and identity was set 95% over the read sequence when aligned to
the GA reads ofMH0006 andMH0012 to Sanger reads from the same samples by
SOAP.
Gene prediction and construction of the non-redundant gene set. We use
MetaGene20—which uses di-codon frequencies estimated by the GC content
of a given sequence, and predicts a whole range ofORFs based on the anonymous
genomic sequences—to findORFs from the contigs of each of the 124 samples as
well as the contigs from the merged assembly.
The predicted ORFs were then aligned to each other using BLAT36. A pair of

genes with greater than 95% identity and aligned length covered over 90% of the
shorter gene was grouped together. The groups sharing genes were then merged,
and the longestORF in eachmerged groupwas used to represent the group, and the
othermembers of the groupwere takenas redundancy. Therefore, we organized the
non-redundant gene set from all the predicted genes by excluding the redundancy.
Finally, theORFswith length less than 100bpwere filtered.We translated theORFs
into protein sequences using the NCBI Genetic Codes11.
Identification of genes. To make a balance between identifying low-abundance
genes and reducing the error-rate of identification, we explored the impact of the
threshold set for read coverage required to identify a gene in individual micro-
biomes. The number of genes decreased about twice when the number of reads
required for identification was increased from 2 to 6, and changed slowly there-
after (Supplementary Fig. 6a). Nevertheless, to include the rare genes into the
analysis, we selected the threshold of 2 reads.
Gene taxonomic assignment. Taxonomic assignment of predicted genes was
carried out using BLASTP alignment against the integrated NR database.
BLASTP alignment hits with e-values larger than 13 1025 were filtered, and for
each gene the significantmatches whichwere defined by e-values#103 e-value of
the tophitwere retained todistinguish taxonomic groups.Thenwedetermined the
taxonomical level of each gene by the lowest common ancestor (LCA)-based
algorithm that was implemented in MEGAN42. The LCA-based algorithm assigns
genes to taxa in the way that the taxonomical level of the assigned taxon reflects the
level of conservation of the gene. For example, if a gene was conserved in many
species, it was assigned to the LCA rather than to a species.
Gene functional classification. We used BLASTP to search the protein
sequences of the predicted genes in the eggNOGdatabase26 andKEGGdatabase24

with e-value#13 1025. The genes were annotated as the function of the NOGs
or KEGG homologues with lowest e-value. The eggNOG database is an integ-
ration of the COG and KOG databases. The genes annotated by COG were
classified into the 25 COG categories, and genes that were annotated by KEGG
were assigned into KEGG pathways.
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Determinationofminimal gut bacterial genome.Thenumber of non-redundant
genes assigned to the eggNOG clusters was normalized by gene length and cluster
copynumber (SupplementaryFig. 8). The clusterswere rankedbynormalized gene
number and the range that included the clusters encoding essentialBacillus subtilis
genes was determined, computing the proportion of these clusters among the
successive groups of 100 clusters. Analysis of the range gene clusters involved,
besides iPath projections, use of KEGG and manual verification of the complete-
ness of the pathways and protein machineries they encode.
Determination of total functional complement and minimal metagenome.
We computed the total and shared number of orthologous groups and/or gene
families present in random combinations of n individuals (with n5 2 to 124, 100
replicates per bin). This analysis was performed on three groups of gene clusters:
(1) known eggNOG orthologous groups (that is, those with functional annota-
tion, excluding those in which the terms [Uu]ncharacteri[sz]ed, [Uu]nknown,
[Pp]redicted or[Pp]utative occurred); (2) all eggNOG orthologous groups; (3)
all orthologous groups plus gene families constructed from remaining genes not
assigned to the two above categories. Families were clustered from all-against-all
BLASTP results usingMCL43 with an inflation factor of 1.1 and a bit-score cutoff
of 60.
Rarefaction analysis. Estimation of total gene richness was done using
EstimateS on 100 randomly picked samples due to memory limitations.
Because the CV value was.0.5, both chao2 (classic) and ICE richness estimators
were calculated and the larger estimate of the two (ICE) was used. The estimate
for this sample size was 3,621,646 genes (ICE) whereas Sobs (Mao Tau) was
3,090,575 genes, or 85.3%. The ICE estimator curve did not completely saturate,
(data not shown) indicating that additional samples will need to be added to
achieve a final, conclusive estimate.
Common bacterial core. To eliminate the influence of very similar strains and
assess the presence of known microbial species among the individuals of the
cohort, we used 650 sequenced bacterial and archaeal genomes as a reference set.

The set was composed from 932 publicly available genomes, whichwere grouped
by similarity, using a 90% identity cutoff and the similarity over at least 80% of
the length. From each group only the largest genome was used. Illumina reads
from 124 individuals were mapped to the set, for species profiling analysis and
the genomes originating from the same species (by differing in size .20%)
curated by manual inspection and by using the 16S-based clustering when the
sequences were available.
Relative abundance of microbial genomes among individuals. We computed
the genome coverage by uniquely mapping Illumina reads and normalized it to
1Gb of sequence, to correct for different sequencing levels in different indivi-
duals. The coverage was summed over all species of the non-redundant bacterial
genome set for each individual and the proportion of each species relative to the
sum calculated.
Species co-existence network. For the 155 species that had genome coverage by
the Illumina reads$1% in at least one individual we calculated the pair-wise
inter-species Pearson correlations between sequencing depths (abundance)
throughout the entire cohort of 124 individuals. From the resulting 11,175
inter-species correlations, correlations less than 20.4 or above 0.4 (n5 342)
were visualized in a graph using Cytoscape44 displaying the average genome
coverage of each species as node size in the graph.
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